ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gaussian Process Sensitivity Analysis for Oceanic Chlorophyll Estimation

Permanent link
https://hdl.handle.net/10037/16500
DOI
https://doi.org/10.1109/JSTARS.2016.2641583
Thumbnail
View/Open
article.pdf (4.800Mb)
Accepted manuscript version (PDF)
Date
2017-01-04
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Blix, Katalin; Camps-Valls, Gustau; Jenssen, Robert
Abstract
Gaussian process regression (GPR) has experienced tremendous success in biophysical parameter retrieval in the past years. The GPR provides a full posterior predictive distribution so one can derive mean and variance predictive estimates, i.e., point-wise predictions and associated confidence intervals. GPR typically uses translation invariant covariances that make the prediction function very flexible and nonlinear. This, however, makes the relative relevance of the input features hardly accessible, unlike in linear prediction models. In this paper, we introduce the sensitivity analysis of the GPR predictive mean and variance functions to derive feature rankings and spectral spacings, respectively. The methodology can be used to uncover knowledge in any kernel-based regression method, it is fast to compute, and it is expressed in closed-form. The methodology is evaluated on GPR for global ocean chlorophyll prediction, revealing the most important spectral bands and their spectral spacings. We illustrate the (successful) methodology in several datasets and sensors.
Description
Source at https://doi.org/10.1109/JSTARS.2016.2641583.
Is part of
Blix, K. (2019). Machine Learning Water Quality Monitoring. (Doctoral thesis). https://hdl.handle.net/10037/16502.
Publisher
IEEE
Citation
Blix, K., Camps-Valls, G. & Jenssen, R. (2017). Gaussian Process Sensitivity Analysis for Oceanic Chlorophyll Estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(4), 1265-1277. https://doi.org/10.1109/JSTARS.2016.2641583
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)