Show simple item record

dc.contributor.authorBlekherman, Grigoriy
dc.contributor.authorKummer, Mario
dc.contributor.authorRiener, Cordian
dc.contributor.authorSchweighofer, Markus
dc.contributor.authorVinzant, Cynthia
dc.date.accessioned2020-11-06T12:18:22Z
dc.date.available2020-11-06T12:18:22Z
dc.date.issued2020
dc.description.abstractA quadrature rule of a measure <i>µ</i> on the real line represents a conic combination of finitely many evaluations at points, called nodes, that agrees with integration against <i>µ</i> for all polynomials up to some fixed degree. In this paper, we present a bivariate polynomial whose roots parametrize the nodes of minimal quadrature rules for measures on the real line. We give two symmetric determinantal formulas for this polynomial, which translate the problem of finding the nodes to solving a generalized eigenvalue problem.en_US
dc.identifier.citationRiener, Blekherman, Kummer, Vinzant, Schweighofer. Generalized eigenvalue methods for Gaussian quadrature rules. Annales Henri Lebesgue (AHL). 2020;3:1327-1341en_US
dc.identifier.cristinIDFRIDAID 1842723
dc.identifier.doi10.5802/ahl.62
dc.identifier.issn2644-9463
dc.identifier.urihttps://hdl.handle.net/10037/19783
dc.language.isoengen_US
dc.publisherCentre Mersenne, Annales Henri Lebesgueen_US
dc.relation.journalAnnales Henri Lebesgue (AHL)
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410en_US
dc.titleGeneralized eigenvalue methods for Gaussian quadrature rulesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record