dc.contributor.author | Blekherman, Grigoriy | |
dc.contributor.author | Kummer, Mario | |
dc.contributor.author | Riener, Cordian | |
dc.contributor.author | Schweighofer, Markus | |
dc.contributor.author | Vinzant, Cynthia | |
dc.date.accessioned | 2020-11-06T12:18:22Z | |
dc.date.available | 2020-11-06T12:18:22Z | |
dc.date.issued | 2020 | |
dc.description.abstract | A quadrature rule of a measure <i>µ</i> on the real line represents a conic combination of finitely many evaluations at points, called nodes, that agrees with integration against <i>µ</i> for all polynomials up to some fixed degree. In this paper, we present a bivariate polynomial whose roots parametrize the nodes of minimal quadrature rules for measures on the real line. We give two symmetric determinantal formulas for this polynomial, which translate the problem of finding the nodes to solving a generalized eigenvalue problem. | en_US |
dc.identifier.citation | Riener, Blekherman, Kummer, Vinzant, Schweighofer. Generalized eigenvalue methods for Gaussian quadrature rules. Annales Henri Lebesgue (AHL). 2020;3:1327-1341 | en_US |
dc.identifier.cristinID | FRIDAID 1842723 | |
dc.identifier.doi | 10.5802/ahl.62 | |
dc.identifier.issn | 2644-9463 | |
dc.identifier.uri | https://hdl.handle.net/10037/19783 | |
dc.language.iso | eng | en_US |
dc.publisher | Centre Mersenne, Annales Henri Lebesgue | en_US |
dc.relation.journal | Annales Henri Lebesgue (AHL) | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2020 The Author(s) | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410 | en_US |
dc.title | Generalized eigenvalue methods for Gaussian quadrature rules | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |