dc.contributor.author | Kruglikov, Boris | |
dc.contributor.author | Santi, Andrea | |
dc.contributor.author | The, Dennis | |
dc.date.accessioned | 2021-03-04T10:15:06Z | |
dc.date.available | 2021-03-04T10:15:06Z | |
dc.date.issued | 2020-10-23 | |
dc.description.abstract | We realize the simple Lie superalgebra <i>G</i>(3) as supersymmetry of various geometric structures, most importantly super-versions of the Hilbert–Cartan equation (SHC) and Cartan's involutive PDE system that exhibit <i>G</i>(2) symmetry. We provide the symmetries explicitly and compute, via the first Spencer cohomology groups, the Tanaka–Weisfeiler prolongation of the negatively graded Lie superalgebras associated with two particular choices of parabolics. We discuss non-holonomic superdistributions with growth vector (2|4, 1|2, 2|0) deforming the flat model SHC, and prove that the second Spencer cohomology group gives a binary quadratic form, thereby indicating a “square-root” of Cartan's classical binary quartic invariant for generic rank 2 distributions in a 5-dimensional space. Finally, we obtain super-extensions of Cartan's classical submaximally symmetric models, compute their symmetries and observe a supersymmetry dimension gap phenomenon. | en_US |
dc.identifier.citation | Kruglikov, Santi, The. G(3)-supergeometry and a supersymmetric extension of the Hilbert–Cartan equation. Advances in Mathematics. 2020 | en_US |
dc.identifier.cristinID | FRIDAID 1846099 | |
dc.identifier.doi | 10.1016/j.aim.2020.107420 | |
dc.identifier.issn | 0001-8708 | |
dc.identifier.issn | 1090-2082 | |
dc.identifier.uri | https://hdl.handle.net/10037/20646 | |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.journal | Advances in Mathematics | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2020 The Author(s) | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410 | en_US |
dc.title | G(3)-supergeometry and a supersymmetric extension of the Hilbert–Cartan equation | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |