ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • View Item
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using Deep Learning Methods to Monitor Non-Observable States in a Building

Permanent link
https://hdl.handle.net/10037/21194
DOI
https://doi.org/10.7557/18.5159
Thumbnail
View/Open
article.pdf (1.135Mb)
Published version (PDF)
Date
2020-02-06
Type
Conference object
Konferansebidrag

Author
Tangrand, Kristoffer; Bremdal, Bernt Arild
Abstract
This paper presents results from ongoing research with a goal to use a combination of time series from non-intrusive ambient sensors and deep recurrent neural networks to predict room usage at a university campus. Training data was created by collecting measurements from ambient sensors measuring room CO2, humidity, temperature, light, motion and sound, while the ground-truth counts was created manually by human observers. Results include analyses of relationships between different sensor data sequences and recommendations for a prototype predictive model using deep recurrent neural networks.
Is part of
Tangrand, K.M. (2023). Some new Contributions to Neural Networks and Wavelets with Applications. (Doctoral thesis). https://hdl.handle.net/10037/28699.
Publisher
Septentrio
Citation
Tangrand, Bremdal. Using Deep Learning Methods to Monitor Non-Observable States in a Building. Proceedings of the Northern Lights Deep Learning Workshop. 2020
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag) [171]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)