ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semi-supervised target classification in multi-frequency echosounder data

Permanent link
https://hdl.handle.net/10037/22715
DOI
https://doi.org/10.1093/icesjms/fsab140
Thumbnail
View/Open
article.pdf (6.310Mb)
Published version (PDF)
Date
2021-08-12
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Choi, Changkyu; Kampffmeyer, Michael; Handegard, Nils Olav; Salberg, Arnt Børre; Brautaset, Olav; Eikvil, Line; Jenssen, Robert
Abstract
Acoustic target classification in multi-frequency echosounder data is a major interest for the marine ecosystem and fishery management since it can potentially estimate the abundance or biomass of the species. A key problem of current methods is the heavy dependence on the manual categorization of data samples. As a solution, we propose a novel semi-supervised deep learning method leveraging a few annotated data samples together with vast amounts of unannotated data samples, all in a single model. Specifically, two inter-connected objectives, namely, a clustering objective and a classification objective, optimize one shared convolutional neural network in an alternating manner. The clustering objective exploits the underlying structure of all data, both annotated and unannotated; the classification objective enforces a certain consistency to given classes using the few annotated data samples. We evaluate our classification method using echosounder data from the sandeel case study in the North Sea. In the semi-supervised setting with only a tenth of the training data annotated, our method achieves 67.6% accuracy, outperforming a conventional semi-supervised method by 7.0 percentage points. When applying the proposed method in a fully supervised setup, we achieve 74.7% accuracy, surpassing the standard supervised deep learning method by 4.7 percentage points.
Is part of
Choi, C. (2023). Advancing Deep Learning for Marine Environment Monitoring. (Doctoral thesis). https://hdl.handle.net/10037/29267.
Publisher
Oxford University Press (OUP)
Citation
Choi C, Kampffmeyer MC, Handegard NO, Salberg AB, Brautaset O, Eikvil L, Jenssen R. Semi-supervised target classification in multi-frequency echosounder data. ICES Journal of Marine Science. 2021
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)