ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semi-supervised target classification in multi-frequency echosounder data

Permanent lenke
https://hdl.handle.net/10037/22715
DOI
https://doi.org/10.1093/icesjms/fsab140
Thumbnail
Åpne
article.pdf (6.310Mb)
Publisert versjon (PDF)
Dato
2021-08-12
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Choi, Changkyu; Kampffmeyer, Michael; Handegard, Nils Olav; Salberg, Arnt Børre; Brautaset, Olav; Eikvil, Line; Jenssen, Robert
Sammendrag
Acoustic target classification in multi-frequency echosounder data is a major interest for the marine ecosystem and fishery management since it can potentially estimate the abundance or biomass of the species. A key problem of current methods is the heavy dependence on the manual categorization of data samples. As a solution, we propose a novel semi-supervised deep learning method leveraging a few annotated data samples together with vast amounts of unannotated data samples, all in a single model. Specifically, two inter-connected objectives, namely, a clustering objective and a classification objective, optimize one shared convolutional neural network in an alternating manner. The clustering objective exploits the underlying structure of all data, both annotated and unannotated; the classification objective enforces a certain consistency to given classes using the few annotated data samples. We evaluate our classification method using echosounder data from the sandeel case study in the North Sea. In the semi-supervised setting with only a tenth of the training data annotated, our method achieves 67.6% accuracy, outperforming a conventional semi-supervised method by 7.0 percentage points. When applying the proposed method in a fully supervised setup, we achieve 74.7% accuracy, surpassing the standard supervised deep learning method by 4.7 percentage points.
Er en del av
Choi, C. (2023). Advancing Deep Learning for Marine Environment Monitoring. (Doctoral thesis). https://hdl.handle.net/10037/29267.
Forlag
Oxford University Press (OUP)
Sitering
Choi C, Kampffmeyer MC, Handegard NO, Salberg AB, Brautaset O, Eikvil L, Jenssen R. Semi-supervised target classification in multi-frequency echosounder data. ICES Journal of Marine Science. 2021
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring