Choosing Bad versus Worse: Predictions of Two-Photon-Absorption Strengths Based on Popular Density Functional Approximations
Permanent link
https://hdl.handle.net/10037/24145Date
2022-01-26Type
Journal articleTidsskriftartikkel
Peer reviewed
Author
Chołuj, Marta; Alam, MD Mehboob; Beerepoot, Maarten; Sitkiewicz, Sebastian P.; Matito, Eduard; Ruud, Kenneth; Zaleśny, RobertAbstract
We present a benchmark study of density functional approximation (DFA) performances in predicting the two-photon-absorption strengths in π-conjugated molecules containing electron-donating/-accepting moieties. A set of 48 organic molecules is chosen for this purpose, for which the two-photon-absorption (2PA) parameters are evaluated using different DFAs, including BLYP, PBE, B3LYP, PBE0, CAM-B3LYP, LC-BLYP, and optimally tuned LC-BLYP. Minnesota functionals and ωB97X-D are also used, applying the two-state approximation, for a subset of molecules. The efficient resolution-of-identity implementation of the coupled-cluster CC2 model (RI-CC2) is used as a reference for the assessment of the DFAs. Two-state models within the framework of both DFAs and RI-CC2 are used to gain a deeper insight into the performance of different DFAs. Our results give a clear picture of the performance of the density functionals in describing the two-photon activity in dipolar π-conjugated systems. The results show that global hybrids are best suited to reproduce the absolute values of 2PA strengths of donor–acceptor molecules. The range-separated functionals CAM-B3LYP and optimally tuned LC-BLYP, however, show the highest linear correlations with the reference RI-CC2 results. Hence, we recommend the latter DFAs for structure–property studies across large series of dipolar compounds.
Publisher
American Chemical SocietyCitation
Chołuj, Alam, Beerepoot, Sitkiewicz, Matito, Ruud, Zaleśny. Choosing Bad versus Worse: Predictions of Two-Photon-Absorption Strengths Based on Popular Density Functional Approximations. Journal of Chemical Theory and Computation. 2021;18:1046-1060Metadata
Show full item recordCollections
Copyright 2021 The Author(s)