Vis enkel innførsel

dc.contributor.authorAlicandro, Roberto
dc.contributor.authorBraides, Andrea
dc.contributor.authorCicalese, Marco
dc.contributor.authorDe Luca, Lucia
dc.contributor.authorPiatnitski, Andrey
dc.date.accessioned2022-02-25T12:22:25Z
dc.date.available2022-02-25T12:22:25Z
dc.date.issued2021-12-20
dc.description.abstractWe describe the emergence of topological singularities in periodic media within the Ginzburg–Landau model and the core-radius approach. The energy functionals of both models are denoted by Eε,δ, where ε represent the coherence length (in the Ginzburg–Landau model) or the core-radius size (in the core-radius approach) and δ denotes the periodicity scale. We carry out the -convergence analysis of Eε,δ as ε → 0 and δ = δε → 0 in the | log ε| scaling regime, showing that the -limit consists in the energy cost of finitely many vortex-like point singularities of integer degree. After introducing the scale parameter λ = min 1, lim ε→0 | log δε| | log ε| (upon extraction of subsequences), we show that in a sense we always have a separation-of-scale effect: at scales smaller than ελ we first have a concentration process around some vortices whose location is subsequently optimized, while for scales larger than ελ the concentration process takes place “after” homogenization.en_US
dc.identifier.citationAlicandro, Braides, Cicalese, De Luca, Piatnitski A. Topological Singularities in Periodic Media: Ginzburg–Landau and Core-Radius Approaches. Archive for Rational Mechanics and Analysis. 2021:1-51en_US
dc.identifier.cristinIDFRIDAID 1975177
dc.identifier.doi10.1007/s00205-021-01731-7
dc.identifier.issn0003-9527
dc.identifier.issn1432-0673
dc.identifier.urihttps://hdl.handle.net/10037/24149
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.journalArchive for Rational Mechanics and Analysis
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.titleTopological Singularities in Periodic Media: Ginzburg–Landau and Core-Radius Approachesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel