Computationally efficient approximate dynamic programming for multi-site production capacity planning with uncertain demands
Permanent link
https://hdl.handle.net/10037/26276Date
2022-07-05Type
Journal articleTidsskriftartikkel
Peer reviewed
Abstract
With globalization and rapid technological-economic development accelerating the market dynamics, consumers' demand is becoming more volatile and diverse. In this situation, capacity adjustment as an operational strategic decision plays a major role to ensure supply chain responsiveness while maintaining costs at a reasonable norm. This study contributes to the literature by developing computationally efficient approximate dynamic programming approaches for production capacity planning considering uncertainties and demand interdependence in a multi-factory multi-product supply chain setting. For this purpose, the k-Nearest-Neighbor-based Approximate Dynamic Programming and the Rolling-Horizon-based Approximate Dynamic Programming are developed to enable real-time decision support while ensuring the robustness of the outcomes in stochastic decision environments. Given the market volatilities in the Thin Film Transistor-Liquid Crystal Display industry, a real case from this sector is investigated to evaluate the applicability of the developed approach and provide insights for other industry situations. The developed method is less complex to implement, and numerical experiments showed that it is also computationally more efficient compared to Stochastic Dynamic Programming.
Publisher
SpringerCitation
Chen-Yang C, Pourhejazy P, Tzu-li. Computationally efficient approximate dynamic programming for multi-site production capacity planning with uncertain demands. Flexible Services and Manufacturing Journal. 2022Metadata
Show full item recordCollections
Copyright 2022 The Author(s)