ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for industriell teknologi
  • Artikler, rapporter og annet (industriell teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for industriell teknologi
  • Artikler, rapporter og annet (industriell teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computationally efficient approximate dynamic programming for multi-site production capacity planning with uncertain demands

Permanent lenke
https://hdl.handle.net/10037/26276
DOI
https://doi.org/10.1007/s10696-022-09458-7
Thumbnail
Åpne
article.pdf (2.591Mb)
Akseptert manusversjon (PDF)
Dato
2022-07-05
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Chen-Yang, Cheng; Pourhejazy, Pourya; Tzu-li, Chen
Sammendrag
With globalization and rapid technological-economic development accelerating the market dynamics, consumers' demand is becoming more volatile and diverse. In this situation, capacity adjustment as an operational strategic decision plays a major role to ensure supply chain responsiveness while maintaining costs at a reasonable norm. This study contributes to the literature by developing computationally efficient approximate dynamic programming approaches for production capacity planning considering uncertainties and demand interdependence in a multi-factory multi-product supply chain setting. For this purpose, the k-Nearest-Neighbor-based Approximate Dynamic Programming and the Rolling-Horizon-based Approximate Dynamic Programming are developed to enable real-time decision support while ensuring the robustness of the outcomes in stochastic decision environments. Given the market volatilities in the Thin Film Transistor-Liquid Crystal Display industry, a real case from this sector is investigated to evaluate the applicability of the developed approach and provide insights for other industry situations. The developed method is less complex to implement, and numerical experiments showed that it is also computationally more efficient compared to Stochastic Dynamic Programming.
Forlag
Springer
Sitering
Chen-Yang C, Pourhejazy P, Tzu-li. Computationally efficient approximate dynamic programming for multi-site production capacity planning with uncertain demands. Flexible Services and Manufacturing Journal. 2022
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (industriell teknologi) [195]
Copyright 2022 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring