Drift wave turbulence and zonal flows
Permanent link
https://hdl.handle.net/10037/4778Date
2012-11-15Type
Master thesisMastergradsoppgave
Author
Meyer, Ole Hauke HeinzAbstract
Anomalously large radial transport levels in fusion devices is commonly believed to
be the cause of small-scale edge localized electrostatic drift wave turbulence. We
review the basic drift wave instability mechanism and show how poloidally elongated structures can self-consistently emerge from the small-scale turbulent motions through envelope modulation governed by the cubic nonlinear Schrödinger
equation. There has been extensive study of the zonal flow - drift wave system
recently, showing that zonal structures effectively reduce radial transport levels.
We study the drift wave turbulence model due to Hasegawa and Wakatani (OHW),
which upon subtle modification (MHW) also allows for zonal flow formation which
is characteristic for the edge region of fusion devices. There is experimental evi-
dence of long-range correlations; we investigate whether zonal flows give rise to such
behavior in the hydrodynamic and quasi-adiabatic state of the OHW and MHW
models. Rescaled range analysis gives no indication of long-range correlation. Struc-
ture function analysis confirm this finding for the zonal flow free simulations where
fluctuations are essentially Gaussian. Heavy tails in probability distributions of tur-
bulent quantities due to the emergence of zonal flows in the quasi-adiabatic state of
MHW complicate the analysis and increase in self-similarity parameters computed
from structure functions cannot be used as proof for long-range correlation. The
finding of this work is that significantly longer time-series are needed to clarify
whether long-range correlations are an artefact of zonal structures or not.
Publisher
Universitetet i TromsøUniversity of Tromsø
Metadata
Show full item recordCollections
Copyright 2012 The Author(s)
The following license file are associated with this item: