Vis enkel innførsel

dc.contributor.advisorBongo, Lars Ailo
dc.contributor.authorKåven, Ove Henrik
dc.date.accessioned2015-06-04T12:42:19Z
dc.date.available2015-06-04T12:42:19Z
dc.date.issued2015-04-12
dc.description.abstractScientists and engineers require ever more powerful software and hardware to analyze data and build models. Unfortunately, current solutions to the problem are often hard to use for scientists that are not software engineers. And software engineers often do not have the mathematical background to understand the scientific problem to solve. This thesis describes MORTAL, a new general-purpose programming language and compiler for high-performance applications, which aims to bridge this gap by offering a multiparadigm programming environment that allows, for example, the mathematical formulae written by the scientist (perhaps using declarative programming) to be connected to the algorithms implemented by the software engineer (perhaps using object-oriented or functional programming) in a natural way, understood by both. The language will apply modern compiler and static analysis technology, along with contract programming, in new ways to both prevent bugs and improve runtime performance. The implemented compiler is self-hosting and able to compile itself, showing that the language and its compiler, though not fully implemented yet, is already usable. The performance of MORTAL programs is also on par with the performance of C programs. We believe MORTAL has the potential to become a useful language for solving many of the more demanding tasks of modern science.en_US
dc.identifier.urihttps://hdl.handle.net/10037/7730
dc.identifier.urnURN:NBN:no-uit_munin_7316
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.rights.accessRightsopenAccess
dc.rights.holderCopyright 2015 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)en_US
dc.subject.courseIDINF-3990en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420::Teoretisk databehandling, programmeringsspråk og -teori: 421en_US
dc.subjectVDP::Mathematics and natural science: 400::Information and communication science: 420::Theoretical computer science, programming languages and programming theory: 421en_US
dc.subjectVDP::Mathematics and natural science: 400::Information and communication science: 420::System development and system design: 426en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420::Systemutvikling og – arbeid: 426en_US
dc.titleMultiparadigm Optimizing Retargetable Transdisciplinary Abstraction Languageen_US
dc.typeMaster thesisen_US
dc.typeMastergradsoppgaveen_US


Tilhørende fil(er)

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)