Show simple item record

dc.contributor.authorDi Remigio, Roberto
dc.contributor.authorRepisky, Michal
dc.contributor.authorKomorovsky, Stanislav
dc.contributor.authorHrobárik, Peter
dc.contributor.authorFrediani, Luca
dc.contributor.authorRuud, Kenneth
dc.date.accessioned2017-03-17T12:18:15Z
dc.date.available2017-03-17T12:18:15Z
dc.date.issued2016-01-01
dc.description.abstractThe description of chemical phenomena in solution is as challenging as it is im- portant for the accurate calculation of molecular properties. Here, we present the implementation of the polarizable continuum model (PCM) in the four-component Dirac–Kohn–Sham density functional theory framework, o ↵ ering a cost-e ↵ ective way to concurrently model solvent and relativistic e ↵ ects. The implementation is based on the matrix representation of the Dirac–Coulomb Hamiltonian in the basis of restricted kinetically balanced Gaussian-type functions, exploiting a non-collinear Kramers unrestricted formalism implemented in the program ReSpect ,andthein- tegral equation formalism of the PCM (IEF-PCM) available through the standalone library PCMSolver . Calculations of EPR parameters ( g -tensors and hyperfine cou- pling A -tensors), as well as of the temperature-dependent contribution to paramag- netic NMR (pNMR) shifts, are presented to validate the model and to demonstrate the importance of taking both relativistic and solvent e ↵ ects into account for mag- netic properties. As shown for selected Ru and Os complexes, the solvent shifts may amount to as much as 25% of the gas-phase values for g -tensor components and even more for pNMR shifts in some extreme cases.en_US
dc.descriptionSource:<a href=http://www.tandfonline.com/doi/full/10.1080/00268976.2016.1239846>http://dx.doi.org/10.1080/00268976.2016.1239846</a>en_US
dc.identifier.citationDi Remigio RDR, Repisky M, Komorovsky S, Hrobárik P, Frediani L, Ruud K. Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts. Molecular Physics. 2016;115:214-227en_US
dc.identifier.cristinIDFRIDAID 1395390
dc.identifier.doi10.1080/00268976.2016.1239846
dc.identifier.issn0026-8976
dc.identifier.issn1362-3028
dc.identifier.urihttps://hdl.handle.net/10037/10764
dc.language.isoengen_US
dc.publisherTaylor & Francis: STM, Behavioural Science and Public Health Titles. Molecular Physicsen_US
dc.relation.journalMolecular Physics
dc.relation.projectIDNotur/NorStore: NN4654Ken_US
dc.relation.projectIDNorges forskningsråd: 214095en_US
dc.relation.projectIDNorges forskningsråd: 179568en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Kjemi: 440::Teoretisk kjemi, kvantekjemi: 444en_US
dc.subjectVDP::Mathematics and natural science: 400::Chemistry: 440::Theoretical chemistry, quantum chemistry: 444en_US
dc.subjectRelativityen_US
dc.subjectDirac–Kohn–Shamen_US
dc.subjectEPRen_US
dc.subjectparamagneticen_US
dc.subjectNMRen_US
dc.titleFour-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shiftsen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record