ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of free text in electronic health records for identification of cancer patient trajectories

Permanent lenke
https://hdl.handle.net/10037/12127
DOI
https://doi.org/10.1038/srep46226
Thumbnail
Åpne
article.pdf (1.509Mb)
(PDF)
Dato
2017-04-07
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Jensen, Kasper; Soguero-Ruiz, Cristina; Mikalsen, Karl Øyvind; Lindsetmo, Rolv-Ole; Kouskoumvekaki, Irene; Girolami, Mark; Skrovseth, Stein Olav; Augestad, Knut Magne
Sammendrag
With an aging patient population and increasing complexity in patient disease trajectories, physicians are often met with complex patient histories from which clinical decisions must be made. Due to the increasing rate of adverse events and hospitals facing financial penalties for readmission, there has never been a greater need to enforce evidence-led medical decision-making using available health care data. In the present work, we studied a cohort of 7,741 patients, of whom 4,080 were diagnosed with cancer, surgically treated at a University Hospital in the years 2004–2012. We have developed a methodology that allows disease trajectories of the cancer patients to be estimated from free text in electronic health records (EHRs). By using these disease trajectories, we predict 80% of patient events ahead in time. By control of confounders from 8326 quantified events, we identified 557 events that constitute high subsequent risks (risk>20%), including six events for cancer and seven events for metastasis. We believe that the presented methodology and findings could be used to improve clinical decision support and personalize trajectories, thereby decreasing adverse events and optimizing cancer treatment.
Beskrivelse
Source at https://doi.org/10.1038/srep46226
Forlag
Scientific Reports
Sitering
Jensen, K., Mikalsen, K. Ø., Lindsetmo, R., Kouskoumvekaki, I., Girolami, M., Skrøvseth, S. O., & Augestad, K. M. (2017). Analysis of free text in electronic health records for identification of cancer patient trajectories. Scientific Reports, 7(46226), 1-12. https://doi.org/10.1038/srep46226
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (matematikk og statistikk) [354]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring