Vis enkel innførsel

dc.contributor.authorJensen, Kasper
dc.contributor.authorSoguero-Ruiz, Cristina
dc.contributor.authorMikalsen, Karl Øyvind
dc.contributor.authorLindsetmo, Rolv-Ole
dc.contributor.authorKouskoumvekaki, Irene
dc.contributor.authorGirolami, Mark
dc.contributor.authorSkrovseth, Stein Olav
dc.contributor.authorAugestad, Knut Magne
dc.date.accessioned2018-02-13T10:05:16Z
dc.date.available2018-02-13T10:05:16Z
dc.date.issued2017-04-07
dc.description.abstractWith an aging patient population and increasing complexity in patient disease trajectories, physicians are often met with complex patient histories from which clinical decisions must be made. Due to the increasing rate of adverse events and hospitals facing financial penalties for readmission, there has never been a greater need to enforce evidence-led medical decision-making using available health care data. In the present work, we studied a cohort of 7,741 patients, of whom 4,080 were diagnosed with cancer, surgically treated at a University Hospital in the years 2004–2012. We have developed a methodology that allows disease trajectories of the cancer patients to be estimated from free text in electronic health records (EHRs). By using these disease trajectories, we predict 80% of patient events ahead in time. By control of confounders from 8326 quantified events, we identified 557 events that constitute high subsequent risks (risk>20%), including six events for cancer and seven events for metastasis. We believe that the presented methodology and findings could be used to improve clinical decision support and personalize trajectories, thereby decreasing adverse events and optimizing cancer treatment.en_US
dc.descriptionSource at <a href=https://doi.org/10.1038/srep46226> https://doi.org/10.1038/srep46226 </a>en_US
dc.identifier.citationJensen, K., Mikalsen, K. Ø., Lindsetmo, R., Kouskoumvekaki, I., Girolami, M., Skrøvseth, S. O., & Augestad, K. M. (2017). Analysis of free text in electronic health records for identification of cancer patient trajectories. Scientific Reports, 7(46226), 1-12. https://doi.org/10.1038/srep46226en_US
dc.identifier.cristinIDFRIDAID 1465886
dc.identifier.doi10.1038/srep46226
dc.identifier.issn2045-2322
dc.identifier.urihttps://hdl.handle.net/10037/12127
dc.language.isoengen_US
dc.publisherScientific Reportsen_US
dc.relation.journalScientific Reports
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Medisinske Fag: 700::Klinisk medisinske fag: 750::Onkologi: 762en_US
dc.subjectVDP::Medisinske Fag: 700::Klinisk medisinske fag: 750::Onkologi: 762en_US
dc.titleAnalysis of free text in electronic health records for identification of cancer patient trajectoriesen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel