Vis enkel innførsel

dc.contributor.authorBianchi, Filippo Maria
dc.contributor.authorLivi, Lorenzo
dc.contributor.authorAlippi, Cesare
dc.contributor.authorJenssen, Robert
dc.date.accessioned2018-03-05T12:26:46Z
dc.date.available2018-03-05T12:26:46Z
dc.date.issued2017-03-10
dc.description.abstractA recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods.en_US
dc.descriptionSource at <a href=https://doi.org/10.1038/srep44037> https://doi.org/10.1038/srep44037 </a>.en_US
dc.identifier.citationBianchi, F.M., Livi, L., Alippi, C., Jenssen, R. (2017). Multiplex visibility graphs to investigate recurrent neural network dynamics. Scientific Reports. 7:44037en_US
dc.identifier.cristinIDFRIDAID 1463249
dc.identifier.doi10.1038/srep44037
dc.identifier.issn2045-2322
dc.identifier.urihttps://hdl.handle.net/10037/12247
dc.language.isoengen_US
dc.publisherNature Publishing Groupen_US
dc.relation.journalScientific Reports
dc.relation.projectIDNorges forskningsråd: 239844en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectComplex networksen_US
dc.subjectComputational scienceen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420en_US
dc.subjectVDP::Mathematics and natural science: 400::Information and communication science: 420en_US
dc.subjectVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550
dc.subjectVDP::Technology: 500::Information and communication technology: 550
dc.titleMultiplex visibility graphs to investigate recurrent neural network dynamicsen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel