Vis enkel innførsel

dc.contributor.authorPiatnitski, Andrey
dc.contributor.authorZhizhina, Elena
dc.date.accessioned2018-04-16T11:15:35Z
dc.date.available2018-04-16T11:15:35Z
dc.date.issued2017
dc.description.abstractThe paper deals with a homogenization problem for a nonlocal linear operator with a kernel of convolution type in a medium with a periodic structure. We consider the natural diffusive scaling of this operator and study the limit behavior of the rescaled operators as the scaling parameter tends to 0. More precisely we show that in the topology of resolvent convergence the family of rescaled operators converges to a second order elliptic operator with constant coefficients. We also prove the convergence of the corresponding semigroups both in L2 space and the space of continuous functions and show that for the related family of Markov processes the invariance principle holds.en_US
dc.descriptionOA, publishers version allowed in institutional repository under the Creative Commons Attribution 4.0 International (CC BY) License. Link to publishers version: <a href=https://doi.org/10.1137/16M1072292>https://doi.org/10.1137/16M1072292</a>en_US
dc.identifier.citationPiatnitski A, Zhizhina. Periodic homogenization of nonlocal operators with a convolution-type kernel. SIAM Journal on Mathematical Analysis. 2017;49(1):64-81en_US
dc.identifier.cristinIDFRIDAID 1512269
dc.identifier.doi10.1137/16M1072292
dc.identifier.issn0036-1410
dc.identifier.issn1095-7154
dc.identifier.urihttps://hdl.handle.net/10037/12527
dc.language.isoengen_US
dc.publisherSociety for Industrial and Applied Mathematics (SIAM)en_US
dc.relation.journalSIAM Journal on Mathematical Analysis
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.titlePeriodic homogenization of nonlocal operators with a convolution-type kernelen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelno
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel