Energetics of saddling versus ruffling in metalloporphyrins: Unusual ruffled dodecasubstituted porphyrins
Permanent link
https://hdl.handle.net/10037/12551Date
2017-10-13Type
Journal articleTidsskriftartikkel
Peer reviewed
Abstract
Presented herein is a first major density functional theory (BP86/D3/STO-TZ2P) survey of the energetics of saddling versus ruffling for a wide range of dodecasubstituted metalloporphyrins with M = Ni, Cu, Zn, Pd, and Pt. For the majority of X8TPP (i.e., β-octasubstituted-meso-tetraphenylporphyrin), the calculations indicated a clear preference for the saddled conformation, consistent with a large body of experimental data. The preference for the saddled conformation relative to the ruffled conformation was found to vary from about ∼0.3–0.4 eV for Me8TPP derivatives up to 1 eV for I8TPP and (CF3)8TPP derivatives. For X = Ph, that is, dodecaphenylporphyrins, the saddled and the ruffled conformation are almost equienergetic, with even a slight preference for the ruffled conformation in some cases. This finding provides a satisfactory explanation for the X-ray crystallographic observation of both saddled and ruffled conformations for dodecaphenylporphyrin complexes as well as for spectroscopic evidence for conformational mobility of these complexes in solution. The calculations also indicate near-equienergetic saddled and ruffled conformations for meso-tetraacetylenyltetrabenzoporphyrins, again consonant with key crystallographic findings. By and large, both the energetics and nonplanar distortions of the metalloporphyrin derivatives correlated well with the Charton and Sterimol B1 steric parameters of the peripheral substituents.
Description
Source at http://doi.org/10.1021/acsomega.7b01004 .