Vis enkel innførsel

dc.contributor.authorDoubrov, Boris
dc.contributor.authorFerapontov, Eugene V.
dc.contributor.authorKruglikov, Boris
dc.contributor.authorNovikov, Vladimir S.
dc.date.accessioned2018-07-25T09:56:52Z
dc.date.available2018-07-25T09:56:52Z
dc.date.issued2017-06-08
dc.description.abstractWe investigate a class of multi-dimensional two-component systems of Monge-Ampère type that can be viewed as generalisations of heavenly type equations appearing in a self-dual Ricci-flat geometry. Based on the Jordan-Kronecker theory of the skew-symmetric matrix pencils, a classification of normal forms of such systems is obtained. All two-component systems of Monge-Ampère type turn out to be integrable and can be represented as the commutativity conditions of parameter-dependent vector fields. Geometrically, systems of Monge-Ampère type are associated with linear sections of the Grassmannians. This leads to an invariant differential-geometric characterisation of the Monge-Ampère property.en_US
dc.description.sponsorshipLondon Mathematical Societyen_US
dc.descriptionAccepted manuscript version. The published version of Doubrov, B., Ferapontov, E.V., Kruglikov, B. & Novikov, V. S. (2017). On a class of integrable systems of Monge-Ampère type. Journal of Mathematical Physics, 58(6). https://doi.org/10.1063/1.4984982 is available at <a href=https://doi.org/10.1063/1.4984982> https://doi.org/10.1063/1.4984982</a>.en_US
dc.identifier.citationDoubrov, B., Ferapontov, E.V., Kruglikov, B. & Novikov, V.S. (2017). On a class of integrable systems of Monge-Ampère type. Journal of Mathematical Physics, 58(6). https://doi.org/10.1063/1.4984982en_US
dc.identifier.cristinIDFRIDAID 1495574
dc.identifier.doi10.1063/1.4984982
dc.identifier.issn0022-2488
dc.identifier.issn1089-7658
dc.identifier.urihttps://hdl.handle.net/10037/13262
dc.language.isoengen_US
dc.publisherAIP Publishingen_US
dc.relation.journalJournal of Mathematical Physics
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.subjectIntegrable systemsen_US
dc.subjectGeneral relativityen_US
dc.subjectMatrix theoryen_US
dc.subjectPartial differential equationsen_US
dc.subjectDifferential invariantsen_US
dc.subjectManifolds Systems analysisen_US
dc.subjectVector fieldsen_US
dc.titleOn a class of integrable systems of Monge-Ampère typeen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel