Vis enkel innførsel

dc.contributor.authorKruglikov, Boris
dc.contributor.authorVollmer, Andreas
dc.contributor.authorLukes-Gerakopoulos, Georgios
dc.date.accessioned2018-09-06T11:20:55Z
dc.date.available2018-09-06T11:20:55Z
dc.date.issued2017-10-01
dc.description.abstractWe discuss rank 2 sub-Riemannian structures on low-dimensional manifolds and prove that some of these structures in dimensions 6, 7 and 8 have a maximal amount of symmetry but no integrals polynomial in momenta of low degrees, except for those coming from the Killing vector fields and the Hamiltonian, thus indicating nonintegrability of the corresponding geodesic flows.en_US
dc.descriptionAccepted manuscript version. Published version available at <a href=https://doi.org/10.1134/S1560354717050033> https://doi.org/10.1134/S1560354717050033</a>.en_US
dc.identifier.citationKruglikov, B., Vollmer, A. & Lukes-Gerakopoulos, G. (2017). On integrability of certain rank 2 sub-Riemannian structures. Regular and Chaotic Dynamics, 22(5), 502-519. https://doi.org/10.1134/S1560354717050033en_US
dc.identifier.cristinIDFRIDAID 1495572
dc.identifier.doi10.1134/S1560354717050033
dc.identifier.issn1560-3547
dc.identifier.issn1468-4845
dc.identifier.urihttps://hdl.handle.net/10037/13699
dc.language.isoengen_US
dc.publisherMAIK Nauka/Interperiodicaen_US
dc.relation.journalRegulârnaâ i haoticeskaâ dinamika
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.subjectSub-Riemannian geodesic flowen_US
dc.subjectKilling tensoren_US
dc.subjectintegralen_US
dc.subjectsymmetryen_US
dc.subjectTanaka prolongationen_US
dc.subjectoverdetermined system of PDEen_US
dc.subjectprolongationen_US
dc.titleOn integrability of certain rank 2 sub-Riemannian structuresen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel