Advancing Segmentation and Unsupervised Learning Within the Field of Deep Learning
Permanent link
https://hdl.handle.net/10037/14264View/ Open
Date
2018-10-19Type
Doctoral thesisDoktorgradsavhandling
Abstract
Has part(s)
Paper I: Kampffmeyer, M., Salberg, A-B. & Jenssen, R. (2016). Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 1-9. Full text not available in Munin due to publisher restrictions. Published version available at https://doi.org/10.1109/CVPRW.2016.90.
Paper II: Kampffmeyer, M., Salberg, A-B. & Jenssen, R. (2018)). Urban Land Cover Classification with Missing Data Modalities Using Deep Convolutional Neural Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11,(6), 1758-1768. Full text not available in Munin due to publisher restrictions. Published version available at https://doi.org/10.1109/IGARSS.2017.8128164.
Paper III: Dong, N., Kampffmeyer, M., Liang, X., Wang, Z., Dai, W. & Xing, E.P. (2018). Unsupervised Domain Adaptation for Automatic Estimation of Cardiothoracic Ratio. (Manuscript). Published version in Frangi, A.F. et al. (Eds.) Medical Image Computing and Computer Assisted Invervention – MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science, 11071. Springer, Cham, available at https://doi.org/10.1007/978-3-030-00934-2_61.
Paper IV: Kampffmeyer, M., Dong, N., Liang, X., Zhang, Y. & Xing, E.P. ConnNet: A Long-Range Relation-Aware PixelConnectivity Network for Salient Segmentation. (Manuscript). Also available at https://arxiv.org/abs/1804.07836. .
Paper V: Kampffmeyer, M., Løkse, S., Bianchi, F.M., Jenssen, R. & Livi, L. The Deep Kernelized Autoencoder. (Manuscript). Published version in Applied Soft Computing, 71, 816-825, available at https://doi.org/10.1016/j.asoc.2018.07.029.
Paper VI: Kampffmeyer, M., Løkse, S., Bianchi, F.M., Livi, L., Salberg, A-B. & Jenssen, R. Deep Divergence-Based Approach to Clustering. (Manuscript).
Paper VII: Kampffmeyer, M., Chen, Y., Liang, X., Wang, H., Zhang, Y. & Xing, E.P. Rethinking Knowledge Graph Propagation for Zero-Shot Learning. (Manuscript). Also available at https://arxiv.org/abs/1805.11724.
Publisher
UiT Norges arktiske universitetUiT The Arctic University of Norway
Metadata
Show full item recordCollections
The following license file are associated with this item: