Show simple item record

dc.contributor.authorMoen, Mari-Ann
dc.contributor.authorAnfinsen, Stian Normann
dc.contributor.authorDoulgeris, Anthony Paul
dc.contributor.authorRenner, Angelika
dc.contributor.authorGerland, Sebastian
dc.date.accessioned2019-01-09T09:29:19Z
dc.date.available2019-01-09T09:29:19Z
dc.date.issued2015
dc.description.abstractThis paper investigates automatic segmentation and classification of C-band, polarimetric synthetic aperture radar (SAR) satellite images of Arctic sea ice under freezing conditions prior to melt. The objective is to investigate the robustness of the results obtained under slightly varying environmental conditions and different viewing geometries. Initially, three geographically overlapping SAR images from consecutive days are incidence-angle corrected and segmented into unknown classes. The segmentation is performed by an unsupervised mixture-of-Gaussian segmentation algorithm utilizing six features extracted from the polarimetric data. After segmentation, the segments are contextually smoothed. One segmented image is manually labelled based on in situ data and expert knowledge. Using this scene as reference, we consider two strategies for class labelling of the other scenes. The first manually labels the classes based on visual inspection of the reference; the second utilizes various statistical distance measures to automatically assign each unknown class to the statistically nearest reference class. These two scenes are also classified pixel-wise by a supervised classification algorithm based on the reference data. Poor classification results are obtained when the incidence angle is very different from the reference scene. Similar viewing geometries reveal good classification and labelling results, the latter regardless of the distance measure used.en_US
dc.description.sponsorshipThe Fram Centre The Norwegian Polar Instituteen_US
dc.descriptionSource at <a href=https://doi.org/10.3189/2015AoG69A802> https://doi.org/10.3189/2015AoG69A802</a>.en_US
dc.identifier.citationMoen, M.-A.N., Anfinsen, S.N., Doulgeris, A.P., Renner, A.H.H. & Gerland, S. (2015). Assessing polarimetric SAR sea-ice classifications using consecutive day images. <i>Annals of Glaciology</i>, 56(69), 285-294. https://doi.org/10.3189/2015AoG69A802en_US
dc.identifier.cristinIDFRIDAID 1259429
dc.identifier.doi10.3189/2015AoG69A802
dc.identifier.issn0260-3055
dc.identifier.issn1727-5644
dc.identifier.urihttps://hdl.handle.net/10037/14398
dc.language.isoengen_US
dc.publisherCambridge University Pressen_US
dc.relation.journalAnnals of Glaciology
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/NORDSATS/195143/Norway/Arctic Earth Observation and Surveillance Technologies//en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Mathematics and natural science: 400::Geosciences: 450::Quaternary geology, glaciology: 465en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Kvartærgeologi, glasiologi: 465en_US
dc.subjectremote sensingen_US
dc.subjectsea iceen_US
dc.titleAssessing polarimetric SAR sea-ice classifications using consecutive day imagesen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record