Vis enkel innførsel

dc.contributor.authorAgarwal, Krishna
dc.contributor.authorMacháň, Radek
dc.contributor.authorPrasad, Dilip Kumar
dc.date.accessioned2019-02-20T14:50:35Z
dc.date.available2019-02-20T14:50:35Z
dc.date.issued2018-03-21
dc.description.abstractLocalization microscopy and multiple signal classification algorithm use temporal stack of image frames of sparse emissions from fluorophores to provide super-resolution images. Localization microscopy localizes emissions in each image independently and later collates the localizations in all the frames, giving same weight to each frame irrespective of its signal-to-noise ratio. This results in a bias towards frames with low signal-to-noise ratio and causes cluttered background in the super-resolved image. User-defined heuristic computational filters are employed to remove a set of localizations in an attempt to overcome this bias. Multiple signal classification performs eigen-decomposition of the entire stack, irrespective of the relative signal-to-noise ratios of the frames, and uses a threshold to classify eigenimages into signal and null subspaces. This results in under-representation of frames with low signal-to-noise ratio in the signal space and over-representation in the null space. Thus, multiple signal classification algorithms is biased against frames with low signal-to-noise ratio resulting into suppression of the corresponding fluorophores. This paper presents techniques to automatically debias localization microscopy and multiple signal classification algorithm of these biases without compromising their resolution and without employing heuristics, user-defined criteria. The effect of debiasing is demonstrated through five datasets of invitro and fixed cell samples.en_US
dc.description.sponsorshipThe publication fund, UiT The Arctic University of Norway Ministry of Education, Singapore European Regional Development Fund the state budget of the Czech Republic EU H2020-MSCA-IF-2016 (SEP-210382872)en_US
dc.descriptionSource at <a href=https://doi.org/10.1038/s41598-018-23374-7>https://doi.org/10.1038/s41598-018-23374-7. </a>en_US
dc.identifier.citationAgarwal, K., Macháň, R. & Prasad, D.K. (2018). Non-heuristic automatic techniques for overcoming low signal-to-noise-ratio bias of localization microscopy and multiple signal classification algorithm. <i>Scientific Reports, 8</i>(1), 4988. https://doi.org/10.1038/s41598-018-23374-7en_US
dc.identifier.cristinIDFRIDAID 1627882
dc.identifier.doi10.1038/s41598-018-23374-7
dc.identifier.issn2045-2322
dc.identifier.urihttps://hdl.handle.net/10037/14734
dc.language.isoengen_US
dc.publisherNature Researchen_US
dc.relation.journalScientific Reports
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430en_US
dc.subjectSuper-resolution microscopyen_US
dc.subjectWide-field fluorescence microscopyen_US
dc.titleNon-heuristic automatic techniques for overcoming low signal-to-noise-ratio bias of localization microscopy and multiple signal classification algorithmen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel