ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessing the performance of the BARCAST climate field reconstruction technique for a climate with long-range memory

Permanent link
https://hdl.handle.net/10037/15020
DOI
https://doi.org/10.5194/cp-14-947-2018
Thumbnail
View/Open
article.pdf (2.107Mb)
Publisher's version (PDF)
Date
2018-06-29
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Nilsen, Tine; Werner, Johannes; Divine, Dmitry V; Rypdal, Martin wibe
Abstract
The skill of the state-of-the-art climate field reconstruction technique BARCAST (Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time) to reconstruct temperature with pronounced long-range memory (LRM) characteristics is tested. A novel technique for generating fields of target data has been developed and is used to provide ensembles of LRM stochastic processes with a prescribed spatial covariance structure. Based on different parameter setups, hypothesis testing in the spectral domain is used to investigate if the field and spatial mean reconstructions are consistent with either the fractional Gaussian noise (fGn) process null hypothesis used for generating the target data, or the autoregressive model of order 1 (AR(1)) process null hypothesis which is the assumed temporal evolution model for the reconstruction technique. The study reveals that the resulting field and spatial mean reconstructions are consistent with the fGn process hypothesis for some of the tested parameter configurations, while others are in better agreement with the AR(1) model. There are local differences in reconstruction skill and reconstructed scaling characteristics between individual grid cells, and the agreement with the fGn model is generally better for the spatial mean reconstruction than at individual locations. Our results demonstrate that the use of target data with a different spatiotemporal covariance structure than the BARCAST model assumption can lead to a potentially biased climate field reconstruction (CFR) and associated confidence intervals.
Description
Source at https://doi.org/10.5194/cp-14-947-2018.
Publisher
European Geosciences Union (EGU)
Citation
Nilsen, T., Werner, J., Divine, D. & Rypdal, M.W. (2018). Assessing the performance of the BARCAST climate field reconstruction technique for a climate with long-range memory. Climate of the Past, 14(6), 947-967. https://doi.org/10.5194/cp-14-947-2018
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (matematikk og statistikk) [357]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)