ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

ConnNet: A Long-Range Relation-Aware Pixel-Connectivity Network for Salient Segmentation

Permanent lenke
https://hdl.handle.net/10037/15212
DOI
https://doi.org/10.1109/TIP.2018.2886997
Thumbnail
Åpne
article.pdf (2.045Mb)
Accepted manuscript version (PDF)
Dato
2018-12-14
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Kampffmeyer, Michael C.; Dong, Nanqing; Liang, Xiaodan; Zhang, Yujia; Xing, Eric P.
Sammendrag
Salient segmentation aims to segment out attention-grabbing regions, a critical yet challenging task and the foundation of many high-level computer vision applications. It requires semantic-aware grouping of pixels into salient regions and benefits from the utilization of global multi-scale contexts to achieve good local reasoning. Previous works often address it as two-class segmentation problems utilizing complicated multi-step procedures, including refinement networks and complex graphical models. We argue that semantic salient segmentation can instead be effectively resolved by reformulating it as a simple yet intuitive pixel-pair-based connectivity prediction task. Following the intuition that salient objects can be naturally grouped via semantic-aware connectivity between neighboring pixels, we propose a pure Connectivity Net (ConnNet). ConnNet predicts the connectivity probabilities of each pixel with its neighboring pixels by leveraging multi-level cascade contexts embedded in the image and long-range pixel relations. We investigate our approach on two tasks, namely, salient object segmentation and salient instance-level segmentation, and illustrate that consistent improvements can be obtained by modeling these tasks as connectivity instead of binary segmentation tasks for a variety of network architectures. We achieve the state-of-the-art performance, outperforming or being comparable to existing approaches while reducing inference time due to our less complex approach.
Beskrivelse
Accepted manuscript version. Published version available at https://doi.org/10.1109/TIP.2018.2886997. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Forlag
Institute of Electrical and Electronics Engineers (IEEE)
Sitering
Kampffmeyer, M., Dong, N., Liang, X., Zhang, Y. & Xing, E.P. (2018). ConnNet: A Long-Range Relation-Aware Pixel-Connectivity Network for Salient Segmentation. IEEE Transactions on Image Processing, 28(5), 2518-2529. https://doi.org/10.1109/TIP.2018.2886997
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring