Vis enkel innførsel

dc.contributor.authorUrco, Miguel
dc.contributor.authorChau, Jorge Luis
dc.contributor.authorWeber, Tobias
dc.contributor.authorVierinen, Juha
dc.contributor.authorVolz, Ryan
dc.date.accessioned2019-10-03T11:04:52Z
dc.date.available2019-10-03T11:04:52Z
dc.date.issued2019-08-15
dc.description.abstractSince the 1950s, specular meteor radars (SMRs) have been used to study the mesosphere and lower thermosphere (MLT) dynamics. Atmospheric parameters derived from SMRs are highly dependent on the number of detected meteors and the accuracy of the meteors' locations. Recently, incoherent and coherent multiple-input-multiple-output (MIMO) radar approaches combined with waveform diversity have been proposed to increase the number of detected meteors and to improve time, altitude, and horizontal resolution of the estimated wind fields. The incoherent MIMO approach refers to the addition of new transmit sites (widely separated), whereas the coherent MIMO refers to the addition of new transmit antennas in the same site (closely separated). In both the cases, a different pseudorandom sequence is transmitted from each antenna element. Unfortunately, the addition of new transmit antennas with different code sequences degrades the performance of conventional signal recovery algorithms. This is a consequence of the cross-interference between the transmitted waveforms, making it worse as the number of transmitters increases. In this article, we propose a signal recovery approach based on compressed sensing, taking advantage of the sparse nature of specular meteor echoes. The approach allows the exact recovery of weak echoes even in interference environments. Besides the advantage of the proposed approach to recover the meteor signal, we discuss the optimal selection of the transmitted waveforms and the minimum code length required for exact recovery. Additionally, we propose a modification of the orthogonal matching pursuit algorithm used in sparse problems to make it applicable in real-time analysis of large data. The success of the proposed approach is corroborated using Monte Carlo simulations and real data from a multi-static spread spectrum meteor radar network installed in northern Germany.en_US
dc.description.sponsorshipDeutsche Forschunggemeinschaft (DFG, German Research Foundation)en_US
dc.descriptionSource at <a href=https://doi.org/10.1109/TGRS.2019.2931375>https://doi.org/10.1109/TGRS.2019.2931375</a>.en_US
dc.identifier.citationUrco, J.M., Chau, J.L., Weber, T., Vierinen, J.P. & Volz, R. (2019). Sparse signal recovery in MIMO specular meteor radars with waveform diversity. <i>IEEE Transactions on Geoscience and Remote Sensing</i>. https://doi.org/10.1109/TGRS.2019.2931375en_US
dc.identifier.cristinIDFRIDAID 1714056
dc.identifier.issn0196-2892
dc.identifier.issn1558-0644
dc.identifier.urihttps://hdl.handle.net/10037/16318
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.journalIEEE Transactions on Geoscience and Remote Sensing
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430::Astrophysics, astronomy: 438en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Astrofysikk, astronomi: 438en_US
dc.subjectCompressed sensing (CS)en_US
dc.subjectmesosphere and lower thermosphere (MLT)en_US
dc.subjectmultiple-input-multiple-output (MIMO) radaren_US
dc.subjectorthogonal matching pursuit (OMP)en_US
dc.subjectsparse recoveryen_US
dc.subjectspecular meteor radar (SMR)en_US
dc.subjectspread-spectrumen_US
dc.subjectwaveform diversityen_US
dc.titleSparse signal recovery in MIMO specular meteor radars with waveform diversityen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel