Vis enkel innførsel

dc.contributor.authorJacome, Cristina
dc.contributor.authorRavn, Johan
dc.contributor.authorHolsbø, Einar
dc.contributor.authorAviles-Solis, Juan Carlos
dc.contributor.authorMelbye, Hasse
dc.contributor.authorAilo Bongo, Lars
dc.date.accessioned2019-10-07T14:18:16Z
dc.date.available2019-10-07T14:18:16Z
dc.date.issued2019-04-15
dc.description.abstractWe applied deep learning to create an algorithm for breathing phase detection in lung sound recordings, and we compared the breathing phases detected by the algorithm and manually annotated by two experienced lung sound researchers. Our algorithm uses a convolutional neural network with spectrograms as the features, removing the need to specify features explicitly. We trained and evaluated the algorithm using three subsets that are larger than previously seen in the literature. We evaluated the performance of the method using two methods. First, discrete count of agreed breathing phases (using 50% overlap between a pair of boxes), shows a mean agreement with lung sound experts of 97% for inspiration and 87% for expiration. Second, the fraction of time of agreement (in seconds) gives higher pseudo-kappa values for inspiration (0.73–0.88) than expiration (0.63–0.84), showing an average sensitivity of 97% and an average specificity of 84%. With both evaluation methods, the agreement between the annotators and the algorithm shows human level performance for the algorithm. The developed algorithm is valid for detecting breathing phases in lung sound recordings.en_US
dc.description.sponsorshipFCT, co-financed by the European Social Fund (POCH) Portuguese national funds from MCTES (Ministério da Ciência, Tecnologia e Ensino Superior)en_US
dc.descriptionSource at <a href=https://doi.org/10.3390/s19081798>https://doi.org/10.3390/s19081798</a>.en_US
dc.identifier.citationJacome, C., Ravn, J., Holsbø, E., Aviles-Solis, J.C., Melbye, H. & Ailo Bongo, L. (2019). Convolutional Neural Network for Breathing Phase Detection in Lung Sounds. <i>Sensors, 19</i>(8), 1798. https://doi.org/10.3390/s19081798en_US
dc.identifier.cristinIDFRIDAID 1705813
dc.identifier.doi10.3390/s19081798
dc.identifier.issn1424-8220
dc.identifier.urihttps://hdl.handle.net/10037/16344
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.journalSensors
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Medical disciplines: 700::Clinical medical disciplines: 750::Lung diseases: 777en_US
dc.subjectVDP::Medisinske Fag: 700::Klinisk medisinske fag: 750::Lungesykdommer: 777en_US
dc.subjectrespiratory phasesen_US
dc.subjectbreath onseten_US
dc.subjectbreath detectionen_US
dc.subjectspectrogramsen_US
dc.subjectautomated classificationen_US
dc.subjectdeep learningen_US
dc.titleConvolutional Neural Network for Breathing Phase Detection in Lung Soundsen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel