Vis enkel innførsel

dc.contributor.authorZhang, Yujia
dc.contributor.authorKampffmeyer, Michael C.
dc.contributor.authorZhao, Xiaoguang
dc.contributor.authorTan, Min
dc.date.accessioned2019-10-09T12:56:15Z
dc.date.available2019-10-09T12:56:15Z
dc.date.issued2019-02-21
dc.description.abstractQuery-conditioned video summarization requires to (1) find a diverse set of video shots/frames that are representative for the whole video, and that (2) the selected shots/frames are related to a given query. Thus it can be tailored to different user interests leading to a better personalized summary and differs from the generic video summarization which only focuses on video content. Our work targets this query-conditioned video summarization task, by first proposing a Mapping Network (MapNet) in order to express how related a shot is to a given query. MapNet helps establish the relation between the two different modalities (videos and query), which allows mapping of visual information to query space. After that, a deep reinforcement learning-based summarization network (SummNet) is developed to provide personalized summaries by integrating relatedness, representativeness and diversity rewards. These rewards jointly guide the agent to select the most representative and diversity video shots that are most related to the user query. Experimental results on a query-conditioned video summarization benchmark demonstrate the effectiveness of our proposed method, indicating the usefulness of the proposed mapping mechanism as well as the reinforcement learning approach.en_US
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_US
dc.descriptionSource at <a href=https://doi.org/10.3390/app9040750>https://doi.org/10.3390/app9040750</a>.en_US
dc.identifier.citationZhang, Y., Kampffmeyer, M., Zhao, X. & Tan, M. (2019). Deep Reinforcement Learning for Query-Conditioned Video Summarization. <i>Applied Sciences, 9</i>(4), 750. https://doi.org/10.3390/app9040750en_US
dc.identifier.cristinIDFRIDAID 1702278
dc.identifier.doi10.3390/app9040750
dc.identifier.issn2076-3417
dc.identifier.urihttps://hdl.handle.net/10037/16366
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.journalApplied Sciences
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/IKTPLUSS/239844/Norway/Next Generation Kernel-Based Machine Learning for Big Missing Data Applied to Earth Observation//en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Technology: 500::Information and communication technology: 550::Computer technology: 551en_US
dc.subjectVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551en_US
dc.subjectquery-conditioned video summarizationen_US
dc.subjectdeep reinforcement learningen_US
dc.subjectvisual-text embeddingen_US
dc.subjectvisual-text embeddingen_US
dc.subjectvision applicationen_US
dc.titleDeep Reinforcement Learning for Query-Conditioned Video Summarizationen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel