dc.contributor.author | Heberle, Alexander Martin | |
dc.contributor.author | Razquin Navas, Patricia | |
dc.contributor.author | Langelaar-Makkinje, Miriam | |
dc.contributor.author | Kasack, Katharina | |
dc.contributor.author | Sadik, Ahmed | |
dc.contributor.author | Faessler, Erik | |
dc.contributor.author | Hahn, Udo | |
dc.contributor.author | Marx-Stoelting, Philip | |
dc.contributor.author | Opitz, Christiane A. | |
dc.contributor.author | Sers, Christine | |
dc.contributor.author | Heiland, Ines | |
dc.contributor.author | Schaeuble, Sascha | |
dc.contributor.author | Thedieck, Kathrin | |
dc.date.accessioned | 2019-12-09T13:56:09Z | |
dc.date.available | 2019-12-09T13:56:09Z | |
dc.date.issued | 2019-03-28 | |
dc.description.abstract | All cells and organisms exhibit stress-coping mechanisms to ensure survival. Cytoplasmic protein-RNA assemblies termed stress granules are increasingly recognized to promote cellular survival under stress. Thus, they might represent tumor vulnerabilities that are currently poorly explored. The translation-inhibitory eIF2α kinases are established as main drivers of stress granule assembly. Using a systems approach, we identify the translation enhancers PI3K and MAPK/p38 as pro-stress-granule-kinases. They act through the metabolic master regulator mammalian target of rapamycin complex 1 (mTORC1) to promote stress granule assembly. When highly active, PI3K is the main driver of stress granules; however, the impact of p38 becomes apparent as PI3K activity declines. PI3K and p38 thus act in a hierarchical manner to drive mTORC1 activity and stress granule assembly. Of note, this signaling hierarchy is also present in human breast cancer tissue. Importantly, only the recognition of the PI3K-p38 hierarchy under stress enabled the discovery of p38’s role in stress granule formation. In summary, we assign a new pro-survival function to the key oncogenic kinases PI3K and p38, as they hierarchically promote stress granule formation. | en_US |
dc.identifier.citation | Heberle, Razquin Navas, Langelaar-Makkinje, Kasack K, Sadik A, Faessler, Hahn U, Marx-Stoelting P, Opitz CA, Sers, Heiland I, Schaeuble, Thedieck K. The PI3K and MAPK/p38 pathways control stress granule assembly in a hierarchical manner. Life Science Alliance (LSA). 2019;2(2) | en_US |
dc.identifier.cristinID | FRIDAID 1719013 | |
dc.identifier.doi | 10.26508/lsa.201800257 | |
dc.identifier.issn | 2575-1077 | |
dc.identifier.uri | https://hdl.handle.net/10037/16850 | |
dc.language.iso | eng | en_US |
dc.publisher | EMBO Press | en_US |
dc.publisher | Rockefeller University Press | en_US |
dc.publisher | Cold Spring Harbor Laboratory Press | en_US |
dc.relation.journal | Life Science Alliance (LSA) | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/754688/EU/Systems Medicine of Metabolic-Signaling Networks: A New Concept for Breast Cancer Patient Stratification/MESI-STRAT/ | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Basic biosciences: 470::Cell biology: 471 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470::Cellebiologi: 471 | en_US |
dc.title | The PI3K and MAPK/p38 pathways control stress granule assembly in a hierarchical manner | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |