dc.contributor.advisor | Jenssen, Robert | |
dc.contributor.advisor | Kampffmeyer, Michael | |
dc.contributor.author | Kaspersen, Oskar Anstein | |
dc.date.accessioned | 2020-01-06T08:49:31Z | |
dc.date.available | 2020-01-06T08:49:31Z | |
dc.date.issued | 2019-10-31 | |
dc.description.abstract | In this thesis, we look at a deep learning approach to AD detection and focus specifically on the problem of class imbalance, which arises from the fact that lesions only occupy a small part of the images, by analyzing how weighting of the loss function can help address this issue. Balancing the weights of the foreground and background class in the cost-function was found to be crucial to achieve good segmentation results. | en_US |
dc.identifier.uri | https://hdl.handle.net/10037/17022 | |
dc.language.iso | nob | en_US |
dc.publisher | UiT Norges arktiske universitet | en_US |
dc.publisher | UiT The Arctic University of Norway | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2019 The Author(s) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0 | en_US |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | en_US |
dc.subject.courseID | FYS-3921 | |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410 | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410 | en_US |
dc.subject | VDP::Technology: 500::Electrotechnical disciplines: 540 | en_US |
dc.subject | VDP::Teknologi: 500::Elektrotekniske fag: 540 | en_US |
dc.title | Investigating the effect of class-imbalance on convolutional neural networks for angiodysplasia detection | en_US |
dc.type | Master thesis | en_US |
dc.type | Mastergradsoppgave | en_US |