Show simple item record

dc.contributor.authorPiatnitski, Andrey
dc.contributor.authorZhizhina, Elena
dc.date.accessioned2020-03-04T17:50:14Z
dc.date.available2020-03-04T17:50:14Z
dc.date.issued2019-11-07
dc.description.abstractThis paper deals with homogenization of parabolic problems for integral convolution type operators with a non-symmetric jump kernel in a periodic elliptic medium. It is shown that the homogenization result holds in moving coordinates. We determine the corresponding effective velocity and prove that the limit operator is a second order parabolic operator with constant coefficients. We also consider the behaviour of the effective velocity in the case of small antisymmetric perturbations of a symmetric kernel, in particular we show that the Einstein relation holds for the studied periodic environment.en_US
dc.descriptionThe final publication is available at IOS Press through <a href=http://dx.doi.org/10.3233/ASY-191533>http://dx.doi.org/10.3233/ASY-191533</a>en_US
dc.identifier.citationPiatnitski, A., Zhizhina, E.(2019) Homogenization of biased convolution type operators. <i>Asymptotic Analysis, 115</i>, (3-4), 241-262en_US
dc.identifier.cristinIDFRIDAID 1750059
dc.identifier.issn0921-7134
dc.identifier.issn1875-8576
dc.identifier.urihttps://hdl.handle.net/10037/17623
dc.language.isoengen_US
dc.publisherIOS Pressen_US
dc.relation.journalAsymptotic Analysis
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2019 IOS Pressen_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410en_US
dc.titleHomogenization of biased convolution type operatorsen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record