dc.contributor.author | Piatnitski, Andrey | |
dc.contributor.author | Zhizhina, Elena | |
dc.date.accessioned | 2020-03-04T17:50:14Z | |
dc.date.available | 2020-03-04T17:50:14Z | |
dc.date.issued | 2019-11-07 | |
dc.description.abstract | This paper deals with homogenization of parabolic problems for integral convolution type operators with a non-symmetric jump kernel in a periodic elliptic medium. It is shown that the homogenization result holds in moving coordinates. We determine the corresponding effective velocity and prove that the limit operator is a second order parabolic operator with constant coefficients. We also consider the behaviour of the effective velocity in the case of small antisymmetric perturbations of a symmetric kernel, in particular we show that the Einstein relation holds for the studied periodic environment. | en_US |
dc.description | The final publication is available at IOS Press through <a href=http://dx.doi.org/10.3233/ASY-191533>http://dx.doi.org/10.3233/ASY-191533</a> | en_US |
dc.identifier.citation | Piatnitski, A., Zhizhina, E.(2019) Homogenization of biased convolution type operators. <i>Asymptotic Analysis, 115</i>, (3-4), 241-262 | en_US |
dc.identifier.cristinID | FRIDAID 1750059 | |
dc.identifier.issn | 0921-7134 | |
dc.identifier.issn | 1875-8576 | |
dc.identifier.uri | https://hdl.handle.net/10037/17623 | |
dc.language.iso | eng | en_US |
dc.publisher | IOS Press | en_US |
dc.relation.journal | Asymptotic Analysis | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2019 IOS Press | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410 | en_US |
dc.title | Homogenization of biased convolution type operators | en_US |
dc.type.version | acceptedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |