ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep divergence-based approach to clustering

Permanent link
https://hdl.handle.net/10037/17759
DOI
https://doi.org/10.1016/j.neunet.2019.01.015
Thumbnail
View/Open
article.pdf (1.792Mb)
Published version (PDF)
Date
2019-02-08
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Kampffmeyer, Michael C.; Løkse, Sigurd; Bianchi, Filippo Maria; Livi, Lorenzo; Salberg, Arnt Børre; Jenssen, Robert
Abstract
A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps.
Is part of
Løkse, S. (2020). Leveraging Kernels for Unsupervised Learning. (Doctoral thesis). https://hdl.handle.net/10037/19911.
Publisher
Elsevier
Citation
Kampffmeyer, M.C.; Løkse, S.; Bianchi, F.M.; Livi, L.; Salberg, A.B.; Jenssen, R. (2019) Deep divergence-based approach to clustering. Neural Networks, 113, 91-101.
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
© 2019TheAuthors

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)