ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessment of land subsidence using interferometric synthetic aperture radar time series analysis and artificial neural network in a geospatial information system: Case study of Rafsanjan Plain

Permanent lenke
https://hdl.handle.net/10037/17834
DOI
https://doi.org/10.1117/1.JRS.13.044530
Thumbnail
Åpne
article.pdf (14.42Mb)
Publisert versjon (PDF)
Dato
2019-12-31
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Bagheri, Mohsen; Dehghani, Maryam; Esmaeily, Ali; Akbari, Vahid
Sammendrag
Land subsidence resulting from groundwater extraction is a widely recurring phenomenon worldwide. To assess land subsidence, traditional methods such as numerical and finite element methods have limitations due to the complex interactions between the different constructor factors of aquifer in each area. We produced a groundwater-induced subsidence map by applying the geological and hydrogeological information of the aquifer system using an artificial neural network (ANN) combined with interferometric synthetic aperture radar (InSAR) and geospatial information system. The main problem with neural networks is providing the ground-truth dataset for training step. Therefore, the subsidence rate used as the network output was estimated using the InSAR time series analysis method. This study indicates the ANN approach is capable of knowing the mechanism of the land subsidence and can be used as a complementary of InSAR method to estimate the land subsidence with effective parameters and accessible data such as groundwater-level data especially in those areas in which measuring the subsidence was not feasible using InSAR. However, the results indicated that average groundwater depth and groundwater level decline were the most effective factors influencing subsidence in the study area using sensitivity analysis.
Beskrivelse
Web Posting Policy—Gold Open Access
https://www.spiedigitallibrary.org/article-sharing-policies?SSO=1
Forlag
Society of Photo-Optical Instrumentation Engineers (SPIE)
Sitering
Bagheri, M.; Dehghani, M.; Esmaeily, A.; Akbari, V. (2019) Assessment of land subsidence using interferometric synthetic aperture radar time series analysis and artificial neural network in a geospatial information system: Case study of Rafsanjan Plain. Journal of Applied Remote Sensing,13, (4), 1-21
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]
Copyright 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring