dc.contributor.author | Doubrov, Boris | |
dc.contributor.author | Ferapontov, Evgeny V | |
dc.contributor.author | Kruglikov, Boris | |
dc.contributor.author | Novikov, Vladimir S | |
dc.date.accessioned | 2020-03-31T11:50:05Z | |
dc.date.available | 2020-03-31T11:50:05Z | |
dc.date.issued | 2018-01-29 | |
dc.description.abstract | Let Gr(d, n) be the Grassmannian of <i>d</i>-dimensional linear subspaces of an <i>n</i>-dimensional vector space <i>V</i>. A submanifold <i>X</i> ⊂ Gr(<i>d, n</i>) gives rise to a differential system Σ(X) that governs <i>d</i>-dimensional submanifolds of <i>V</i> whose Gaussian image is contained in <i>X</i>. We investigate a special case of this construction where <i>X</i> is a six-fold in Gr(4, 6). The corresponding system Σ(<i>X</i>) reduces to a pair of first-order PDEs for 2 functions of 4 independent variables. Equations of this type arise in self-dual Ricci-flat geometry. Our main result is a complete description of <i>integrable</i> systems Σ(<i>X</i>). These naturally fall into two subclasses.<p>
<ul id = «mylist»><li>Systems of Monge–Ampère type. The corresponding six-folds <i>X</i> are codimension 2 linear sections of the Plücker embedding Gr(4, 6)<span>↪</span>P<sup>14</sup>.</li>
<li>General linearly degenerate systems. The corresponding six-folds <i>X</i> are the images of quadratic maps P<sup>6</sup>⇢ Gr(4, 6) given by a version of the classical construction of Chasles.</li></ul><p>
We prove that integrability is equivalent to the requirement that the characteristic variety of system Σ(<i>X</i>) gives rise to a conformal structure which is self-dual on every solution. In fact, all solutions carry hyper-Hermitian geometry. | en_US |
dc.description | This article has been accepted for publication in International Mathematics Research Notices Published by Oxford University Press. | en_US |
dc.identifier.citation | Doubrov B, Ferapontov EV, Kruglikov BS, Novikov VS. Integrable Systems in Four Dimensions Associated with Six-Folds in Gr(4, 6). International mathematics research notices. 2019;2019(21):6585-6613 | en_US |
dc.identifier.cristinID | FRIDAID 1782263 | |
dc.identifier.doi | 10.1093/imrn/rnx308 | |
dc.identifier.issn | 1073-7928 | |
dc.identifier.issn | 1687-0247 | |
dc.identifier.uri | https://hdl.handle.net/10037/17941 | |
dc.language.iso | eng | en_US |
dc.publisher | Oxford University Press | en_US |
dc.relation.journal | International mathematics research notices | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2018 The Author(s) | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410 | en_US |
dc.title | Integrable Systems in Four Dimensions Associated with Six-Folds in Gr(4, 6) | en_US |
dc.type.version | submittedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |