ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integrable Systems in Four Dimensions Associated with Six-Folds in Gr(4, 6)

Permanent lenke
https://hdl.handle.net/10037/17941
DOI
https://doi.org/10.1093/imrn/rnx308
Thumbnail
Åpne
article.pdf (439.0Kb)
Innsendt manusversjon (PDF)
Dato
2018-01-29
Type
Journal article
Tidsskriftartikkel

Forfatter
Doubrov, Boris; Ferapontov, Evgeny V; Kruglikov, Boris; Novikov, Vladimir S
Sammendrag
Let Gr(d, n) be the Grassmannian of d-dimensional linear subspaces of an n-dimensional vector space V. A submanifold X ⊂ Gr(d, n) gives rise to a differential system Σ(X) that governs d-dimensional submanifolds of V whose Gaussian image is contained in X. We investigate a special case of this construction where X is a six-fold in Gr(4, 6). The corresponding system Σ(X) reduces to a pair of first-order PDEs for 2 functions of 4 independent variables. Equations of this type arise in self-dual Ricci-flat geometry. Our main result is a complete description of integrable systems Σ(X). These naturally fall into two subclasses.

  • Systems of Monge–Ampère type. The corresponding six-folds X are codimension 2 linear sections of the Plücker embedding Gr(4, 6)↪P14⁠.
  • General linearly degenerate systems. The corresponding six-folds X are the images of quadratic maps P6⇢ Gr(4, 6) given by a version of the classical construction of Chasles.

We prove that integrability is equivalent to the requirement that the characteristic variety of system Σ(X) gives rise to a conformal structure which is self-dual on every solution. In fact, all solutions carry hyper-Hermitian geometry.

Beskrivelse
This article has been accepted for publication in International Mathematics Research Notices Published by Oxford University Press.
Forlag
Oxford University Press
Sitering
Doubrov B, Ferapontov EV, Kruglikov BS, Novikov VS. Integrable Systems in Four Dimensions Associated with Six-Folds in Gr(4, 6). International mathematics research notices. 2019;2019(21):6585-6613
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (matematikk og statistikk) [357]
Copyright 2018 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring