Show simple item record

dc.contributor.authorKruglikov, Boris
dc.date.accessioned2020-03-31T13:41:45Z
dc.date.available2020-03-31T13:41:45Z
dc.date.issued2019
dc.description.abstractThe Poincaré function is a compact form of counting moduli in local geometric problems. We discuss its property in relation to V. Arnold’s conjecture, and derive this conjecture in the case when the pseudogroup acts algebraically and transitively on the base. Then we survey the known counting results for differential invariants and derive new formulae for several other classification problems in geometry and analysis.en_US
dc.descriptionSource at <a href=http://www.mathjournals.org/mmj/>http://www.mathjournals.org/mmj/. </a>en_US
dc.identifier.citationKruglikov BS. Poincaré function for moduli of differential-geometric structures. Moscow Mathematical Journal. 2019;19(4):761-788en_US
dc.identifier.cristinIDFRIDAID 1783450
dc.identifier.doi10.17323/1609-4514-2019-19-4-761-788
dc.identifier.issn1609-3321
dc.identifier.issn1609-4514
dc.identifier.urihttps://hdl.handle.net/10037/17946
dc.language.isoengen_US
dc.publisherIndependent University of Moscowen_US
dc.relation.journalMoscow Mathematical Journal
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2019 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410en_US
dc.titlePoincaré function for moduli of differential-geometric structuresen_US
dc.type.versionsubmittedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record