dc.contributor.author | Kruglikov, Boris | |
dc.date.accessioned | 2020-03-31T13:41:45Z | |
dc.date.available | 2020-03-31T13:41:45Z | |
dc.date.issued | 2019 | |
dc.description.abstract | The Poincaré function is a compact form of counting moduli in local geometric problems. We discuss its property in relation to V. Arnold’s conjecture, and derive this conjecture in the case when the pseudogroup acts algebraically and transitively on the base. Then we survey the known counting results for differential invariants and derive new formulae for several other classification problems in geometry and analysis. | en_US |
dc.description | Source at <a href=http://www.mathjournals.org/mmj/>http://www.mathjournals.org/mmj/. </a> | en_US |
dc.identifier.citation | Kruglikov BS. Poincaré function for moduli of differential-geometric structures. Moscow Mathematical Journal. 2019;19(4):761-788 | en_US |
dc.identifier.cristinID | FRIDAID 1783450 | |
dc.identifier.doi | 10.17323/1609-4514-2019-19-4-761-788 | |
dc.identifier.issn | 1609-3321 | |
dc.identifier.issn | 1609-4514 | |
dc.identifier.uri | https://hdl.handle.net/10037/17946 | |
dc.language.iso | eng | en_US |
dc.publisher | Independent University of Moscow | en_US |
dc.relation.journal | Moscow Mathematical Journal | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2019 The Author(s) | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410 | en_US |
dc.title | Poincaré function for moduli of differential-geometric structures | en_US |
dc.type.version | submittedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |