dc.contributor.author | Akishev, Gabdolla | |
dc.contributor.author | Lukkassen, Dag | |
dc.contributor.author | Persson, Lars Erik | |
dc.date.accessioned | 2020-04-28T11:27:28Z | |
dc.date.available | 2020-04-28T11:27:28Z | |
dc.date.issued | 2020-03-20 | |
dc.description.abstract | In this paper we prove some essential complements of the paper (J. Inequal. Appl. 2019:171, 2019) on the same theme. We prove some new Fourier inequalities in the case of the Lorentz–Zygmund function spaces
L
q,r
(logL
)
α
Lq,r(logL)α
involved and in the case with an unbounded orthonormal system. More exactly, in this paper we prove and discuss some new Fourier inequalities of this type for the limit case
L
2,r
(logL
)
α
L2,r(logL)α
, which could not be proved with the techniques used in the paper | en_US |
dc.identifier.citation | Akishev, G; Lukkassen, D.; Persson, L.E.(2020) Some new Fourier inequalities for unbounded orthogonal systems in Lorentz-Zygmund Spaces. <i>Journal of Inequalities and Applications, 2020</i>, 77 | en_US |
dc.identifier.cristinID | FRIDAID 1808104 | |
dc.identifier.doi | 10.1186/s13660-020-02344-6 | |
dc.identifier.issn | 1025-5834 | |
dc.identifier.issn | 1029-242X | |
dc.identifier.uri | https://hdl.handle.net/10037/18146 | |
dc.language.iso | eng | en_US |
dc.relation.journal | Journal of Inequalities and Applications | |
dc.relation.uri | https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-020-02344-6 | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | © 2020 BioMed Central Ltd | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410 | en_US |
dc.title | Some new Fourier inequalities for unbounded orthogonal systems in Lorentz-Zygmund spaces | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |