Vis enkel innførsel

dc.contributor.authorJha, Debesh
dc.contributor.authorPia H, Smedsrud
dc.contributor.authorRiegler, Michael
dc.contributor.authorHalvorsen, Pål
dc.contributor.authorde Lange, Thomas
dc.contributor.authorJohansen, Dag
dc.contributor.authorJohansen, Håvard D.
dc.date.accessioned2020-05-20T06:42:38Z
dc.date.available2020-05-20T06:42:38Z
dc.date.issued2020-01-24
dc.description.abstractPixel-wise image segmentation is a highly demanding task in medical-image analysis. In practice, it is difficult to find annotated medical images with corresponding segmentation masks. In this paper, we present Kvasir-SEG: an open-access dataset of gastrointestinal polyp images and corresponding segmentation masks, manually annotated by a medical doctor and then verified by an experienced gastroenterologist. Moreover, we also generated the bounding boxes of the polyp regions with the help of segmentation masks. We demonstrate the use of our dataset with a traditional segmentation approach and a modern deep-learning based Convolutional Neural Network (CNN) approach. The dataset will be of value for researchers to reproduce results and compare methods. By adding segmentation masks to the Kvasir dataset, which only provide frame-wise annotations, we enable multimedia and computer vision researchers to contribute in the field of polyp segmentation and automatic analysis of colonoscopy images.en_US
dc.descriptionPublisher's version available at: <a href=https://link.springer.com/chapter/10.1007%2F978-3-030-37734-2_37>https://link.springer.com/chapter/10.1007%2F978-3-030-37734-2_37</a>en_US
dc.identifier.citationJha, D.; Pia, H.; Riegler, M.; Halvorsen, P.; de Lange, T.; Johansen, D.; Johansen, H.J. (2020) Kvasir-SEG: A Segmented Polyp Dataset. <i>Lecture Notes in Computer Science (LNCS), 2020</i>, 11962, 451-462en_US
dc.identifier.cristinIDFRIDAID 1776857
dc.identifier.doi10.1007/978-3-030-37734-2_37
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/10037/18342
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.journalLecture Notes in Computer Science (LNCS)
dc.relation.projectIDNorges forskningsråd: 270053en_US
dc.relation.projectIDNorges forskningsråd: 263248en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 Springeren_US
dc.subjectVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551en_US
dc.subjectVDP::Technology: 500::Information and communication technology: 550::Computer technology: 551en_US
dc.subjectVDP::Medisinske fag: 700::Klinisk medisinske fag: 750::Gasteroenterologi: 773en_US
dc.subjectVDP::Midical sciences: 700::Clinical medical sciences: 750::Gastroenterology: 773en_US
dc.subjectVDP::Matematikk og naturvitenskap: 400en_US
dc.subjectVDP::Mathematics and natural scienses: 400en_US
dc.subjectVDP::Matematikk og naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420::Simulering, visualisering, signalbehandling, bildeanalyse: 429en_US
dc.subjectVDP::Mathematics and natural scienses: 400::Information and communication science: 420::Simulation, visualisation, signal processing, image analysis: 429en_US
dc.titleKvasir-SEG: A Segmented Polyp Dataseten_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel