Vis enkel innførsel

dc.contributor.authorWexler, David
dc.contributor.authorHollweg, Joseph V
dc.contributor.authorEfimov, Anatoli I
dc.contributor.authorSong, Paul
dc.contributor.authorJensen, Elizabeth T
dc.contributor.authorLionello, Roberto
dc.contributor.authorVierinen, Juha
dc.contributor.authorCoster, Anthea
dc.date.accessioned2020-05-20T11:49:10Z
dc.date.available2020-05-20T11:49:10Z
dc.date.issued2019-09-02
dc.description.abstractThe study of coronal energy transport, central to the solar wind acceleration problem, relies upon accurate representation of magnetic fields and plasma electron densities. This information is difficult to obtain in middle‐to‐lower coronal regions that may contain complex magnetic structures. Faraday rotation (FR) solar radio occultation observations, which reveal line‐of‐sight (LOS) integrated product of the coronal magnetic field and electron density, can help characterize the coronal environment and constrain magnetic field strengths. Global magnetohydrodynamic (MHD) models use specified synoptic solar surface magnetograms and may be used to facilitate FR interpretation by estimating detailed magnetic field properties along the radio LOS. We present a hybrid FR analysis incorporating magnetic field solutions from an MHD coronal model, and an electron density radial profile conforming to radio frequency shift observations. The FR modeled by the hybrid method is compared to MErcury Surface, Space ENvironment, GEochemistry and Ranging spacecraft radio FR observations through a coronal region of low heliolatitudes and radial distance 1.60–1.86 R⊙ from the heliocenter, collected during a state of relative solar quiescence. The hybrid model reasonably reproduces the form, polarity, and magnitude of the observed FR. For this specific coronal region, the calculated radial profile of electron concentrations and varied magnetic field strengths indicate Alfvén wave speeds below 50 km/s close to the point of closest approach but near 400 km/s in adjacent regions along the sounding LOS. The new approach of combining MHD models with radio sounding observations supports study of MHD wave processes in the challenging middle‐coronal magneto‐ionic environment.en_US
dc.identifier.citationWexler D, Hollweg JV, Efimov AI, Song, Jensen ET, Lionello, Vierinen J, Coster A. (2019). Radio occultation observations of the solar corona over 1.60-1.86R: Faraday rotation and frequency-shift analysis. <i>JGR Space Physics, 124<7</i>(10), 7761-7777.en_US
dc.identifier.cristinIDFRIDAID 1717257
dc.identifier.doihttps://doi.org/10.1029/2019JA026937
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/10037/18353
dc.language.isoengen_US
dc.publisherAmerican Geophysical Union (AGU)en_US
dc.relation.journalJournal of Geophysical Research - Space Physics
dc.rights.accessRightsopenAccessen_US
dc.rights.holder©2019. American Geophysical Unionen_US
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430en_US
dc.titleRadio occultation observations of the solar corona over 1.60-1.86R⊙: Faraday rotation and frequency-shift analysisen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel