ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data

Permanent lenke
https://hdl.handle.net/10037/18366
DOI
https://doi.org/10.1016/j.oceaneng.2020.107478
Thumbnail
Åpne
article.pdf (2.164Mb)
Publisert versjon (PDF)
Dato
2020-05-21
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Murray, Brian; Perera, Lokukaluge Prasad
Sammendrag
Advances in artificial intelligence are driving the development of intelligent transportation systems, with the purpose of enhancing the safety and efficiency of such systems. One of the most important aspects of maritime safety is effective collision avoidance. In this study, a novel dual linear autoencoder approach is suggested to predict the future trajectory of a selected vessel. Such predictions can serve as a decision support tool to evaluate the future risk of ship collisions. Inspired by generative models, the method suggests to predict the future trajectory of a vessel based on historical AIS data. Using unsupervised learning to facilitate trajectory clustering and classification, the method utilizes a cluster of historical AIS trajectories to predict the trajectory of a selected vessel. Similar methods predict future states iteratively, where states are dependent upon the prior predictions. The method in this study, however, suggests predicting an entire trajectory, where all states are predicted jointly. Further, the method estimates a latent distribution of the possible future trajectories of the selected vessel. By sampling from this distribution, multiple trajectories are predicted. The uncertainties of the predicted vessel positions are also quantified in this study.
Er en del av
Murray, B. (2021). Machine Learning for Enhanced Maritime Situation Awareness: Leveraging Historical AIS Data for Ship Trajectory Prediction. (Doctoral thesis). https://hdl.handle.net/10037/20984
Forlag
Elsevier
Sitering
Murray B, Perera LP. A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data. Ocean Engineering. 2020
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (teknologi og sikkerhet) [361]
Copyright 2020 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring