ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Storm-driven across-shelf oceanic flows into coastal waters

Permanent lenke
https://hdl.handle.net/10037/18541
DOI
https://doi.org/10.5194/os-16-389-2020
Thumbnail
Åpne
article.pdf (11.23Mb)
Publisert versjon (PDF)
Dato
2020-04-02
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Jones, Sam; Inall, Mark; Porter, Marie; Graham, Jennifer A.; Cottier, Finlo Robert
Sammendrag
The North Atlantic Ocean and northwest European shelf experience intense low-pressure systems during the winter months. The effect of strong winds on shelf circulation and water properties is poorly understood as observations during these episodes are rare, and key flow pathways have been poorly resolved by models up to now. We compare the behaviour of a cross-shelf current in a quiescent period in late summer, with the same current sampled during a stormy period in midwinter, using drogued drifters. Concurrently, high-resolution time series of current speed and salinity from a coastal mooring are analysed. A Lagrangian analysis of modelled particle tracks is used to supplement the observations. Current speeds at 70 m during the summer transit are 10–20 cm s−1, whereas on-shelf flow reaches 60 cm s−1 during the winter storm. The onset of high across-shelf flow is identified in the coastal mooring time series, both as an increase in coastal current speed and as an abrupt increase in salinity from 34.50 to 34.85, which lags the current by 8 d. We interpret this as the wind-driven advection of outer-shelf (near-oceanic) water towards the coastline, which represents a significant change from the coastal water pathways which typically feed the inner shelf. The modelled particle analysis supports this interpretation: particles which terminate in coastal waters are recruited locally during the late summer, but recruitment switches to the outer shelf during the winter storm. We estimate that during intense storm periods, on-shelf transport may be up to 0.48 Sv, but this is near the upper limit of transport based on the multi-year time series of coastal current and salinity. The likelihood of storms capable of producing these effects is much higher during positive North Atlantic Oscillation (NAO) winters.
Forlag
European Geosciences Union (EGU)
Sitering
Jones S, Inall M, Porter, Graham, Cottier FR. Storm-driven across-shelf oceanic flows into coastal waters. Ocean Science. 2020;16(2):389-403
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (arktisk og marin biologi) [1636]
Copyright 2020 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring