Show simple item record

dc.contributor.authorFournier, Bertrand
dc.contributor.authorSamaritani, Emanuela
dc.contributor.authorFrey, Beat
dc.contributor.authorSeppey, Christophe Victor W.
dc.contributor.authorLara, Enrique
dc.contributor.authorHeger, Thierry J.
dc.contributor.authorMitchell, Edward A.D.
dc.date.accessioned2020-06-19T18:48:23Z
dc.date.available2020-06-19T18:48:23Z
dc.date.embargoEndDate2022-05-10
dc.date.issued2020-05-10
dc.description.abstractBeta diversity is a key component of biodiversity with implications ranging from species dynamics to ecosystem functioning. However, β-diversity and its drivers have received little attention, especially for micro-eukaryotes which play key roles in soil functioning. We studied the diversity of soil micro-eukaryotes in a Swiss lowland floodplain using high-throughput Illumina sequencing of soil DNA. We determined the temporal vs. spatial patterns of soil micro-eukaryotic α- and β-diversity in six contrasted habitats sampled over one year. We identified the drivers of these patterns among soil conditions and functions and identified indicator taxa of habitats in each season. We found higher spatial than temporal variability and a strong space-time interaction in soil micro-eukaryotic diversity patterns as well as in their edaphic drivers, which contrasts with previous observation of bacterial diversity patterns. Our results show that, although soil micro-eukaryotic diversity indeed varies seasonally, it is correlated most strongly with edaphic variables and vegetation but the strength of correlations with individual drivers varied seasonally. Microbial diversity patterns and their drivers can thus differ quite substantially among seasons and taxa. Despite the dominance of spatial patterns, the temporal component of microbial diversity should not be ignored to accurately estimate the diversity and the complexity of soil microbial community assembly processes. Given the importance of soil microbial diversity for ecosystem functioning such knowledge is relevant for land management.en_US
dc.identifier.citationFournier B, Samaritani, Frey B, Seppey CVW, Lara E, Heger TJ, Mitchell EA. Higher spatial than seasonal variation in floodplain soil eukaryotic microbial communities. Soil Biology and Biochemistry. 2020;147en_US
dc.identifier.cristinIDFRIDAID 1814274
dc.identifier.doi10.1016/j.soilbio.2020.107842
dc.identifier.issn0038-0717
dc.identifier.issn1879-3428
dc.identifier.urihttps://hdl.handle.net/10037/18611
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalSoil Biology and Biochemistry
dc.rights.accessRightsembargoedAccessen_US
dc.rights.holderCopyright 2020 Elsevier Ltd.en_US
dc.subjectVDP::Mathematics and natural science: 400::Basic biosciences: 470::General microbiology: 472en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470::Generell mikrobiologi: 472en_US
dc.titleHigher spatial than seasonal variation in floodplain soil eukaryotic microbial communitiesen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record