Show simple item record

dc.contributor.advisorKruglikov, Boris
dc.contributor.authorAndreassen, Fredrik
dc.date.accessioned2020-08-17T13:41:37Z
dc.date.available2020-08-17T13:41:37Z
dc.date.issued2020-06-23
dc.description.abstractBy restricting generating functions of infinitesimal symmetries of symplectic and contact vector spaces to quadratic forms, we obtain a finite-dimensional Lie subalgebra, consisting of vector fields isomorphic to the linear symplectic or conformal symplectic algebra. This allows us to look for joint invariants of the diagonal action of g on product manifolds. We find an explicit recipe for creating a transcendence basis for the field of m-fold rational joint invariants over R, starting from a base space M of any dimension greater than or equal to 2.en_US
dc.identifier.urihttps://hdl.handle.net/10037/19003
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subject.courseIDMAT-3900
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410en_US
dc.titleJoint Invariants of Symplectic and Contact Lie Algebra Actionsen_US
dc.typeMaster thesisen_US
dc.typeMastergradsoppgaveen_US


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)