ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Auroral classification ergonomics and the implications for machine learning

Permanent lenke
https://hdl.handle.net/10037/19076
DOI
https://doi.org/10.5194/gi-9-267-2020
Thumbnail
Åpne
article.pdf (1.191Mb)
Publisert versjon (PDF)
Dato
2020-07-09
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
McKay, Derek; Kvammen, Andreas
Sammendrag
The machine-learning research community has focused greatly on bias in algorithms and have identified different manifestations of it. Bias in training samples is recognised as a potential source of prejudice in machine learning. It can be introduced by the human experts who define the training sets. As machine-learning techniques are being applied to auroral classification, it is important to identify and address potential sources of expert-injected bias. In an ongoing study, 13 947 auroral images were manually classified with significant differences between classifications. This large dataset allowed for the identification of some of these biases, especially those originating as a result of the ergonomics of the classification process. These findings are presented in this paper to serve as a checklist for improving training data integrity, not just for expert classifications, but also for crowd-sourced, citizen science projects. As the application of machine-learning techniques to auroral research is relatively new, it is important that biases are identified and addressed before they become endemic in the corpus of training data.
Er en del av
Kwammen, A. (2021). Auroral Image Processing Techniques - Machine Learning Classification and Multi-Viewpoint Analysis. (Doctoral thesis). https://hdl.handle.net/10037/22584
Forlag
Copernicus Publications, European Geosciences Union
Sitering
McKay D, Kvammen A. Auroral classification ergonomics and the implications for machine learning. Geoscientific Instrumentation, Methods and Data Systems. 2020;9(2):267-273
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2020 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring