ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Auroral classification ergonomics and the implications for machine learning

Permanent link
https://hdl.handle.net/10037/19076
DOI
https://doi.org/10.5194/gi-9-267-2020
Thumbnail
View/Open
article.pdf (1.191Mb)
Published version (PDF)
Date
2020-07-09
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
McKay, Derek; Kvammen, Andreas
Abstract
The machine-learning research community has focused greatly on bias in algorithms and have identified different manifestations of it. Bias in training samples is recognised as a potential source of prejudice in machine learning. It can be introduced by the human experts who define the training sets. As machine-learning techniques are being applied to auroral classification, it is important to identify and address potential sources of expert-injected bias. In an ongoing study, 13 947 auroral images were manually classified with significant differences between classifications. This large dataset allowed for the identification of some of these biases, especially those originating as a result of the ergonomics of the classification process. These findings are presented in this paper to serve as a checklist for improving training data integrity, not just for expert classifications, but also for crowd-sourced, citizen science projects. As the application of machine-learning techniques to auroral research is relatively new, it is important that biases are identified and addressed before they become endemic in the corpus of training data.
Is part of
Kwammen, A. (2021). Auroral Image Processing Techniques - Machine Learning Classification and Multi-Viewpoint Analysis. (Doctoral thesis). https://hdl.handle.net/10037/22584
Publisher
Copernicus Publications, European Geosciences Union
Citation
McKay D, Kvammen A. Auroral classification ergonomics and the implications for machine learning. Geoscientific Instrumentation, Methods and Data Systems. 2020;9(2):267-273
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)