Show simple item record

dc.contributor.advisorVierinen, Juha
dc.contributor.advisorBaddeley, Lisa
dc.contributor.authorFloer, Markus
dc.date.accessioned2020-09-17T13:12:52Z
dc.date.available2020-09-17T13:12:52Z
dc.date.issued2020-06-29
dc.description.abstractIn order to make advances in studies of mesoscale ionospheric phenomena, a new type of ionosonde is needed. This ionosonde should be relatively inexpensive and small form factor. It should also be well suited for operation in a network of transmit and receiver sites that are operated cooperatively in order to measure vertical and oblique paths between multiple transmitters and receivers in the network. No such ionosonde implementation currently exists. This thesis describes the design and implementation of a coded continuous wave ionosonde, which utilizes long pseudo-random transmit waveforms. Such radar waveforms have several advantages: they can be used at low peak power, they can be used in multi-static cooperative radar networks, they can be used to measure range-Doppler overspread targets, they are relatively robust against external interference, and they produce relatively low interference to other users that share the same portion of the electromagnetic spectrum. The new ionosonde design is thus well suited for use in ionosonde networks. The technical design relies on the software defined radio paradigm and the hardware design is based on commercially available inexpensive hardware. The hardware and software implementation is shown to meet the technical and scientific requirements that were set for the instrument. The operation of the instrument is demonstrated in practice in Longyearbyen, Svalbard. With this new ionosonde design and proof of concept implementation, it has been possible to re-establish routine ionospheric soundings at Longyearbyen, Svalbard; to replace the Dynasonde instrument that was decommissioned several years ago. It is also possible to use this new design as a basis for larger networks of ionosondes. The software and hardware design is made publicly available as open source, so that anyone interested can reproduce the instrument and also contribute to the project in the future.en_US
dc.identifier.urihttps://hdl.handle.net/10037/19423
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subject.courseIDFYS-3931
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430en_US
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430en_US
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430::Space and plasma physics: 437en_US
dc.titleDesign and Implementation of a Software Defined Ionosonde. A contribution to the development of distributed arrays of small instrumentsen_US
dc.typeMaster thesisen_US
dc.typeMastergradsoppgaveen_US


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)