ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Arabidopsis (ASHH2) CW domain binds monomethylated K4 of the histone H3 tail through conformational selection

Permanent link
https://hdl.handle.net/10037/19554
DOI
https://doi.org/10.1111/febs.15256
Thumbnail
View/Open
article.pdf (7.323Mb)
Published version (PDF)
Date
2020-02-21
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Dobrovolska, Olena; Brilkov, Maxim; Madeleine, Noëlly; Ødegaard-Fougner, Øyvind; Strømland, Øyvind; Martin, Stephen R.; De Marco, Valeria; Christodoulou, Evangelos; Teigen, Knut; Isaksson, Johan; Underhaug, Jarl; Reuter, Nathalie; Aalen, Reidunn B.; Aasland, Rein; Halskau, Øyvind
Abstract
Chromatin post‐translational modifications are thought to be important for epigenetic effects on gene expression. Methylation of histone N‐terminal tail lysine residues constitutes one of many such modifications, executed by families of histone lysine methyltransferase (HKMTase). One such protein is ASHH2 from the flowering plant Arabidopsis thaliana, equipped with the interaction domain, CW, and the HKMTase domain, SET. The CW domain of ASHH2 is a selective binder of monomethylation at lysine 4 on histone H3 (H3K4me1) and likely helps the enzyme dock correctly onto chromatin sites. The study of CW and related interaction domains has so far been emphasizing lock–key models, missing important aspects of histone‐tail CW interactions. We here present an analysis of the ASHH2 CW‐H3K4me1 complex using NMR and molecular dynamics, as well as mutation and affinity studies of flexible coils. β‐augmentation and rearrangement of coils coincide with changes in the flexibility of the complex, in particular the η1, η3 and C‐terminal coils, but also in the β1 and β2 strands and the C‐terminal part of the ligand. Furthermore, we show that mutating residues with outlier dynamic behaviour affect the complex binding affinity despite these not being in direct contact with the ligand. Overall, the binding process is consistent with conformational selection. We propose that this binding mechanism presents an advantage when searching for the correct post‐translational modification state among the highly modified and flexible histone tails, and also that the binding shifts the catalytic SET domain towards the nucleosome.
Publisher
Wiley
Citation
Dobrovolska O, Brilkov M, Madeleine N, Ødegaard-Fougner Ø, Strømland Ø, Martin SR, De Marco V, Christodoulou, Teigen K, Isaksson J, Underhaug J, Reuter N, Aalen R.B., Aasland R, Halskau ØH. The Arabidopsis (ASHH2) CW domain binds monomethylated K4 of the histone H3 tail through conformational selection. The FEBS Journal. 2020:1-23
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (kjemi) [565]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)