dc.contributor.author | Yu, Weihai | |
dc.contributor.author | Rostad, Sigbjørn | |
dc.date.accessioned | 2020-10-13T13:06:22Z | |
dc.date.available | 2020-10-13T13:06:22Z | |
dc.date.issued | 2020-04 | |
dc.description.abstract | CRDTs, or Conflict-free Replicated Data Types, are data abstractions that guarantee convergence for replicated data. Set is one of the most fundamental and widely used data types. Existing general-purpose set CRDTs associate every element in the set with causal contexts as meta data. Manipulation of causal contexts can be complicated and costly. We present a new set CRDT, CLSet (causal-length set), where the meta data associated with an element is simply a natural number (called causal length). We compare CLSet with existing general purpose CRDTs in terms of semantics and performance. | en_US |
dc.identifier.citation | Yu, W. & Rostad, S. (2020). A low-cost set CRDT based on causal lengths. In: Fekete, A. & Kleppmann, M. (Eds), <i>Proceedings of the 7th Workshop on Principles and Practice of Consistency for Distributed Data (PaPoC '20) (Article 5). Association for Computing Machinery, New York, NY, USA</i>. https://doi.org/10.1145/3380787.3393678 | en_US |
dc.identifier.cristinID | FRIDAID 1808201 | |
dc.identifier.doi | 10.1145/3380787.3393678 | |
dc.identifier.isbn | 978-1-4503-7524-5 | |
dc.identifier.uri | https://hdl.handle.net/10037/19591 | |
dc.language.iso | eng | en_US |
dc.publisher | Association for Computing Machinery | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2020 The Author(s) | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Information and communication science: 420 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420 | en_US |
dc.title | A low-cost set CRDT based on causal lengths | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Chapter | en_US |
dc.type | Bokkapittel | en_US |